In this thesis, a coarse-grained multi-scale method for 2D crystallyn solids based-on finite element consepts has presented. In this method, both scales are atomic scale and similar to what we see in non-local QC method, the entire atomic structure will be intact. Accordingly, calculations of potential functions and forces in the domain will have the atomic accuracy. In the presented method to reduce the domain’s degrees of freedom, the classical finite-element meshing concept to mesh the elastic linear areas in the domain is used and the MD calculations will done on the mesh nodes. Therefore, degrees of freedom in the system will reduce and consequently, the computational cost will reduce....

In this thesis, a coarse-grained multi-scale method for 2D crystallyn solids based-on finite element consepts has presented. In this method, both scales are atomic scale and similar to what we see in non-local QC method, the entire atomic structure will be intact. Accordingly, calculations of potential functions and forces in the domain will have the atomic accuracy. In the presented method to reduce the domain’s degrees of freedom, the classical finite-element meshing concept to mesh the elastic linear areas in the domain is used and the MD calculations will done on the mesh nodes. Therefore, degrees of freedom in the system will reduce and consequently, the computational cost will reduce....