Indeterminate behavior of some forces in the aerospace industry due to flight at high speeds, gust, combustion, etc., has led to the exposure of structures to dynamic loads with random behavior in the nonlinear manner. To analyze problems in which the loading is random or the system parameters are random, the only possible way is to describe the system response in statistical values.Since most modern structures have complex geometry and the number of degrees of freedom is very high, advanced numerical solution methods are used to obtain the system response. In this study, the geometric nonlinear vibrations of structures under random loading are investigated by the finite element...

Indeterminate behavior of some forces in the aerospace industry due to flight at high speeds, gust, combustion, etc., has led to the exposure of structures to dynamic loads with random behavior in the nonlinear manner. To analyze problems in which the loading is random or the system parameters are random, the only possible way is to describe the system response in statistical values.Since most modern structures have complex geometry and the number of degrees of freedom is very high, advanced numerical solution methods are used to obtain the system response. In this study, the geometric nonlinear vibrations of structures under random loading are investigated by the finite element...