Color PCA eigenimages and their application to compression and watermarking

Abadpour, A ; Sharif University of Technology | 2008

43 Viewed
  1. Type of Document: Article
  2. DOI: 10.1016/j.imavis.2007.10.013
  3. Publisher: Elsevier Ltd , 2008
  4. Abstract:
  5. From the birth of multi-spectral imaging techniques, there has been a tendency to consider and process this new type of data as a set of parallel gray-scale images, instead of an ensemble of an n-D realization. However, it has been proved that using vector-based tools leads to a more appropriate understanding of color images and thus more efficient algorithms for processing them. Such tools are able to take into consideration the high correlation of the color components and thus to successfully carry out energy compaction. In this paper, a novel method is proposed to utilize the principal component analysis in the neighborhoods of an image in order to extract the corresponding eigenimages. These eigenimages exhibit high levels of energy compaction and thus are appropriate for such operations as compression and watermarking. Subsequently, two such methods are proposed in this paper and their comparison with available approaches is presented. © 2007 Elsevier B.V. All rights reserved
  6. Keywords:
  7. Color image processing ; Computational methods ; Eigenvalues and eigenfunctions ; Imaging techniques ; Optical correlation ; Vectors ; Eigenimages ; Gray-scale images ; Realization ; Digital watermarking
  8. Source: Image and Vision Computing ; Volume 26, Issue 7 , 2008 , Pages 878-890 ; 02628856 (ISSN)
  9. URL: https://www.sciencedirect.com/science/article/abs/pii/S0262885607001953