Loading...
Search for: atomistic-scale
0.007 seconds

    Study the effect of viscoelastic matrix model on the stability of CNT/polymer composites by multiscale modeling

    , Article Polymer Composites ; Volume 30, Issue 11 , 2009 , Pages 1545-1551 ; 02728397 (ISSN) Montazeri, A ; Naghdabadi, R ; Sharif University of Technology
    2009
    Abstract
    In this article, a Molecular Structural Mechanics/Finite Element (MSM/FE) multiscale modeling of carbon nanotube/polymer composites with viscoelastic (VE) polymer matrix is introduced. The nanotube is modeled at the atomistic scale using structural molecular mechanics. The matrix deformation is analyzed by nonlinear finite element method considering VE behavior. The nanotube and matrix are assumed to be bonded by van der Waals interactions based on the Lennard-Jones potential at the interface. Using the MSM/FE multiscale model, we investigate the effect of carbon nanotube (CNT) on the improvement of mechanical stability of the nanocomposite. Also, the buckling behavior of these... 

    Investigation of the interphase effects on the mechanical behavior of carbon nanotube polymer composites by multiscale modeling

    , Article Journal of Applied Polymer Science ; Volume 117, Issue 1 , March , 2010 , Pages 361-367 ; 00218995 (ISSN) Montazeri, A ; Naghdabadi, R ; Sharif University of Technology
    2010
    Abstract
    In this article, a multiscale modeling procedure is implemented to study the effect of interphase on the Young's modulus of CNT/polymer composites. For this purpose, a three-phase RVE is introduced which consists of three components, i.e., a carbon nanotube, an interphase layer, and an outer polymer matrix. The nanotube is modeled at the atomistic scale using molecular structural mechanics. Moreover, three-dimensional elements are employed to model the interphase layer and polymer matrix. The nanotube and polymer matrix are assumed to be bonded by van der Waals interactions based on the Lennard-Jones potential at the interface. Using this Molecular Structural Mechanics/Finite Element... 

    Investigating the effect of carbon nanotube defects on the column and shell buckling of carbon nanotube-polymer composites using multiscale modeling

    , Article International Journal for Multiscale Computational Engineering ; Volume 7, Issue 5 , 2009 , Pages 431-444 ; 15431649 (ISSN) Montazeri, A ; Naghdabadi, R ; Sharif University of Technology
    2009
    Abstract
    Carbon nanotube (CNT)-reinforced polymer composites have attracted great attention due to their exceptionally high strength. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. In this article, a new three-phase molecular structural mechanics/finite element (MSM/FE) multiscale model is used to study the effect of CNT vacancy defects on the stability of single-wall (SW) CNT-polymer composites. The nanotube is modeled at the atomistic scale using MSM, whereas the interphase layer and polymer matrix are analyzed by the FE method. The nanotube and polymer matrix are assumed to be bonded by van der Waals interactions...