Loading...
Search for: pressure-drop-ratio
0.005 seconds

    Numerical Simulation of a Novel Static Mixer by CFD

    , M.Sc. Thesis Sharif University of Technology Haddadi, Mohammad Mehdi (Author) ; Rashtchian, Davood (Supervisor) ; Hosseini, Hossein (Supervisor)
    Abstract
    The main objective of this study is a numerical simulation of flow and mixing behavior of two miscible liquids in a new static mixer over the Reynolds number in the range of 20-160. The performance of the proposed static mixer has been compared with the well-known three different static mixers namely, Kenics, SMX, and Komax. Pressure drop ratio (Z-factor), a coefficient of variation (CoV) and extensional efficiency (α) characteristics were, respectively, used to evaluate power consumption, distributive mixing and dispersive mixing performances in all static mixers. Since there are no experimental data for examined mixers, firstly, the CFD model was validated with measured data of the... 

    Comparative analysis of different static mixers performance by CFD technique: An innovative mixer

    , Article Chinese Journal of Chemical Engineering ; Volume 28, Issue 3 , 2020 , Pages 672-684 Haddadi, M. M ; Hosseini, S. H ; Rashtchian, D ; Olazar, M ; Sharif University of Technology
    Chemical Industry Press  2020
    Abstract
    The flow and mixing behavior of two miscible liquids has been studied in an innovative static mixer by using CFD, with Reynolds numbers ranging from 20 to 160. The performance of the new mixer is compared with those of Kenics, SMX, and Komax static mixers. The pressure drop ratio (Z-factor), coefficient of variation (CoV), and extensional efficiency (α) features have been used to evaluate power consumption, distributive mixing, and dispersive mixing performances, respectively, in all mixers. The model is firstly validated based on experimental data measured for the pressure drop ratio and the coefficient of variation. CFD results are consistent with measured data and those obtained by... 

    Optimization of the heat transfer coefficient and pressure drop of Taylor-Couette-Poiseuille flows between an inner rotating cylinder and an outer grooved stationary cylinder

    , Article International Journal of Heat and Mass Transfer ; Volume 108 , 2017 , Pages 1449-1459 ; 00179310 (ISSN) Nouri Borujerdi, A ; Nakhchi, M. E ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The aim of this study is to find optimum values of design parameters of annular flow with outer grooved cylinder and rotating inner cylinder in the presence of axial flow by using Response surface Method (RSM). This configuration is popular in cooling of electric generators and rotating machineries. Groove aspect ratio (0