Loading...
Search for: adsorption
0.015 seconds
Total 559 records

    Application of Worm-Like Micelles for Heavy Oil Recovery: Experimental and Modeling

    , M.Sc. Thesis Sharif University of Technology Hemmati, Nasim (Author) ; Ghaznafari, Mohammad Hossein (Supervisor)
    Abstract
    Surfactants are widely used in enhancing oil recovery. But application of worm-like micelles which seem to be a perfect candidate for enhancing heavy oil recovery have been less studied despite their significant ability in reducing interfacial tension and their high viscosity. This research consists of three parts. In the first part, the kinetic and equilibrium adsorption of surfactant on reservoir rock is experimentally investigated, and its appropriate kinetic and equilibrium adsorption model is specified. According to the adsorption models, the pseudo second order kintic coefficient of adsorption is proved to have a linear relationship with concentration, so its value at different... 

    Artificial Neural Network Based Prediction of Heat of Adsorption of Alkanes on Various Zeolites

    , M.Sc. Thesis Sharif University of Technology Zhiyani, Mehrzad (Author) ; Gobal, Ferydon (Supervisor)
    Abstract
    Generally, predicting the adsorption and Catalytic characteristics of the solids base on the primary principles is impossible; this is only possible for small molecules and single crystal surfaces. On the other hand, phenomenological approaches, which are based on experimental data, are efficient approaches in many cases. The best predictions and designs are done by those who have an extensive information “resources” about the “Reactive Substances- Catalytic-conditions” and are able to “analyze” the data based on the “chemical physical Models”. A Neural network is an extremely simplified model of the human brain that predicts a complex characteristic(s) from a series of primary... 

    Modified Zeolitic Nanostructures: Synthesis, Characterization and the Investigation of Their Catalytic-Sorption-Antibacterial Applications

    , Ph.D. Dissertation Sharif University of Technology Padervand, Mohsen (Author) ; Gholami, Mohammad Reza (Supervisor) ; Gobal, Fereydoun (Co-Advisor)
    Abstract
    Modified zeolitic nanostructures were prepared by sol-gel, hydrothermal and coprecipitation methods. At first step, natural zeolite was used as a support for preparing the Ag/AgBr/TiO2 photocatalysts. Their photocatalytic properties were studied by degradation of pollutants and microorganism inactivation at the presence of different illumination source. These processes were mechanistically investigated and the results were explained. At second step, mordenite anocrystals, which synthesized by hydrothermal method, were used as an effective support to prepare the AgX/TiO2/MOR photocatalysts. Photocatalytic degradation of an azo dye performed over these nanocomposites and a mechanism suggested... 

    Comparison of Activated Carbon from Cellulose Resources in Separating Oil Pollutants from Contaminated Water (Case Study: Benzene)

    , M.Sc. Thesis Sharif University of Technology Soltani, Samira (Author) ; Borgheie, Mehdi (Supervisor)
    Abstract
    Activated carbon, as an adsorbent with a high adsorption capacity and low cost, has many applications in liquid and gas adsorption processes. Among the adsorption of liquid phase, there are examples of drinking water purification, wastewater treatment, food industry, brewery, chemical separation (acids, amines, glycerin and glycols), enzymes ... and in adsorption from the gas phase there are examples of removing toxic compounds Containing sulfur and recycling sulfur, purifying biogas, use in gas masks, etc. Various materials can be used as raw material to make activated carbon. Materials such as walnut, almonds, coconut, pine, corn, etc. In this thesis, a feasibility study on the production... 

    Studies on DBT Removal from Compositional Oil Model Using CNT

    , M.Sc. Thesis Sharif University of Technology Imani, Masoumeh (Author) ; Vossoughi, Manoochehr (Supervisor) ; Aalemzadeh, Iran (Supervisor)
    Abstract
    In this research, carbon nanotubes (CNTs) and CNT coated by titanium dioxide (TiO2) were used as adsorbents for desulfurization. Photocatalytic oxidation by titanium dioxide Degussa P-25 nanoparticles (as photocatalyst) immobilized on a porous and low-density support called “perlite” and CNT/TiO2 was perused. TiO2-coatings were prepared by liquid phase deposition method.This is a wet process for the formation of metal oxide thin films on substrates. The coating of nanotubes with TiO2 was confirmed by IR and EDAX and morphological properties were observed by SEM analysis.The physical properties of adsorbents were determine using BET.Dibenzothiophene (DBT)dissolved in acetonitrile was used as... 

    Theoretical Study of Organic Pollutants Adsorption on Graphene, Doped Graphene and Defective Graphene Nanosheets

    , M.Sc. Thesis Sharif University of Technology Yeganeh, Raziyeh (Author) ; Rahman Setayesh, Shahrbanou (Supervisor)
    Abstract
    Among the xenobiotic compounds, chlorophenols are considered to be as the most dangerous compounds for the environment and living organisms. These compounds are abundantly found in the wastewater of many chemical industry factories. In this research, by using Gaussian software and density functional theory at the level of B3LYP / 6-31G (d, p),the adsorption of molecules such as phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol over graphene, nitrogen and boron doped graphene sheet are studied. The most stable configurations were determined and adsorption energies were calculated. In addition, to understand the adsorption mechanism, electron properties such as state density and... 

    Adsorption Processes in Capacitive Deionization

    , M.Sc. Thesis Sharif University of Technology Vaezi, Mehran (Author) ; Taghavinia, Nima (Supervisor)
    Abstract
    Today the water crisis affects billions around the world.According to existance of large amount of salty water on the earth, it seems one of the best soloution is desalination of salty water.There are methods for removing ions from water such as thermal methods, membrane methods , chemical methods and capacitive deionization.Capacitive deionization is based on the deviation of ions in the electric field.CDI system contains of two conductive porous electrodes that an elecric field is applied between them.While the brine pass through the space between the elecrodes the ions are absorbed by elecrodes. After a while the electrodes get saturated so a reverse potential is needed to regenerate the... 

    Study of 131I Adsorption Behavior on Nanoporous Silicates Modified with Elements of Ag, Cu, Zn, Ni

    , M.Sc. Thesis Sharif University of Technology Rohani, Ramezan (Author) ; Sayf Kordi, Ali Akbar (Supervisor) ; Sepehrian, Hamid (Supervisor)
    Abstract
    One of the common methods used for treatment of gaseous radioactive wastes in nuclear waste management is adsorption process. Nanoporous materials have found great utility as sorption media because of their large internal surface area and more adsorption sites than other adsorbents, which caused the increasing attention of researchers to use them in the nuclear waste management. Hence in this study, the surface of nanoporous silicates of SBA-15 and MCM-41 modified with d-block elements of the periodic table such as silver, copper, zinc and nickel by wet impregnation method. After characterization by different techniques such as X-ray diffraction, nitrogen gas porosimetry, Fourier... 

    Experimental Study of Oxygen Reduction Reaction (ORR) on Cu-alloys, Electrocatalysts in Alkaline Solution and Theoretical Investigation of Oxygen Adsorption on Cu-alloys Nano-clusters

    , Ph.D. Dissertation Sharif University of Technology Arab, Ramezan (Author) ; Gobal, Fereydoon (Supervisor)
    Abstract
    In this study, electrochemical oxygen reduction reaction (ORR) was studied on Cu, Pd, Rh, Pd-Cu and Rh-Cu alloys in alkaline solution. Pd-Cu and Rh-Cu alloys were prepared by electrochemical methods. On copper electrode it is found that direct oxygen reduction is accompanied by the electrochemical reductions of copper oxides. Also, mechanism and kinetics of reaction change as the amount of copper oxides increase on the surface. For electrodeposited alloys, it is indicated that the reactivity of Pd-Cu and Rh-Cu alloys toward oxygen reduction is higher than pure Pd and pure Rh. The maximum reactivity among Pd-Cu alloys is related to the sample with 24.5% copper content while the maximum... 

    Study on Adsorption of Uranium from Saghand Ore Leach Liquor by Continuous Ion Exchange Systems

    , M.Sc. Thesis Sharif University of Technology Noori Khangah, Behrooz (Author) ; Outokesh, Mohammad (Supervisor) ; Godocynejhad, Davood (Supervisor) ; Saberyan, Kamal (Co-Supervisor) ; Asghari, Reza (Co-Supervisor)
    Abstract
    The current study was attributed to uranium uptake by Varion-AP resin from Saghand, Iran Uranium Mine, ore leach liquor. A suitable high-efficiency system was designed for continuous ion exchange at the bench scale and the uranium uptake parameters were optimized. In this system, 1 reactors was used with a volume of 3 liters in stage with the same height difference. A leach liquor containing uranium with a concentration of between 200 and 300 mg/l was flowed from the feed storage by gravity between reactor 1 to 10 at a flow rate of 30 lit/h and Varion-AP resin was transferred in counter-current flow from stage 10 to 1 by a pneumatic pump. The output of each reactor had a screener that... 

    Study on Thermodynamics of Iodine Vapor Adsorption on Cu Nanoparticles by Different Computational Approach

    , M.Sc. Thesis Sharif University of Technology Razavi, Maliheh (Author) ; Outokesh, Mohammad (Supervisor)
    Abstract
    Iodine isotopes are among the most significant medical radioisotopes with a wide range of applications in therapy and diagnosis. The I-131 isotope is usually synthesized by irradiation of natural tellurium in atomic reactors. But there is an alternative route in which this isotopes is produced along with two other significant medical radioisotopes (i.e. Mo-99, Xe-131) by neutronic irradiation of uranium in the reactors. To separate iodine isotopes especially in the extraction process of fission fragments, it is necessary to be selective adsorption of iodine on a selective adsorbent. One of the most selective adsorbent for this application is copper. The aim of this study is to compare the... 

    Experimental and Theoretical Study of Methane Adsorption on Multiwall Carbon Nano Tubes

    , M.Sc. Thesis Sharif University of Technology Seddighi, Khosro (Author) ; Taghikhani, Vahid (Supervisor) ; Ghotbi, Siroos (Supervisor)
    Abstract
    In this project, theoretical and experimental study of methane adsorption on Multiwall Carbon Nano-Tubes (MWCNT) has been performed. This study has been conducted in the way to achieve a suitable method for methane storage and transportation. To carry out the experiments, the volumetric method was used up to 500 psia at various temperatures of 298.15 K, 303.15 K, 308.15 K. The effect of moisture was also studied at 298.15 K. Also, various adsorption isotherms were used to model the experimental data collected in this work. The results showed that the amount of methane adsorbed on the MWCNT can decrease with increasing the moisture and temperature of the adsorption cell. In order to... 

    Experimental Investigation of Heavy Oil Recovery by Natural Surfactant Injection in Heterogeneous Systems Using Micromodel Apparatus

    , M.Sc. Thesis Sharif University of Technology Aabloo, Milad (Author) ; Rashtchian, Davood (Supervisor) ; Ghazanfari, Mohammad Hossein (Co-Advisor)
    Abstract
    Nowadays, due to limitation of production from conventional oil reservoirs, enhanced recovery from heavy oil reservoirs is of great concern. However, production from these energy resources is not a simple task and production using common technologies is not easily exploitable. Heterogeneous structure and also high surface tension between injected fluid and reservoir oil are of the main challenges during water flooding processes in heavy oil reservoirs. The high surface tension force causes a large part of the oil remains in the reservoir after the water flooding operation. One method for overcoming this problem is the use of surfactants that reduces capillary forces and consequently... 

    Modeling and Simulation of Gas Absorption in Hollow Fiber Membrane Contactors Using Nanofluids

    , M.Sc. Thesis Sharif University of Technology Karimi, Rezvan (Author) ; Molaei Dehkordi, Asghar (Supervisor)
    Abstract
    Today, the usage of hollow membrane contactors is considered by the researchers as a novel solution in the separation and purification industry, including the sweetening of gas. Improving the performance of these devices requires a more detailed study of the process factors and changes in its chemistry. Hence, providing a suitable mathematical model by examining the details of the flow pattern within the contactor is based on the computational fluid dynamics technique in the agenda. Also, improving the absorption of components such as carbon dioxide and hydrogen sulfide from the gas mixture using chemical absorbents such as monoethanolamine will be investigated. The change in the mass... 

    Core-Scale Modeling and Experimental Study of Surfactant Flooding due to Enhanced Oil Recovery in Carbonate Rocks

    , M.Sc. Thesis Sharif University of Technology Seidy Esfahlan, Mina (Author) ; Ghazanfari, Mohammad Hossein (Supervisor) ; Jamshidi, Saeed (Co-Advisor)
    Abstract
    Chemical flooding such as surfactant flooding in oil reservoirs can change the wettability and interfacial tension between oil and water and so reduce the residual oil saturation in the reservoir. Some of these materials can be adsorbed a lot on the surface of carbonate rocks, so it is difficult to predict the oil recovery factor in such process. Therefore it is necessary to survey the adsorption amount of surfactants in chemical EOR injections.In this thesis, the adsorption of a nonionic surfactant on the surface of carbonate rock is experimented and the proper model is obtained. Then the surfactant is injected in a core saturated with oil to observe the efficiency of this surfactant in... 

    Adsorption Process Modeling by Rigorous Solution Method, on the Packed Bed Filled Zeolite

    , M.Sc. Thesis Sharif University of Technology Feizbakhshan, Mohammad (Author) ; Rashtchian, Davood (Supervisor) ; Taghikhani, Vahid (Supervisor) ; Farhadi, Fatolla (Supervisor)
    Abstract
    The appearance of water in pipe lines of the natural gas transportation would cause several problems. In this regard, disparate methods have been developed to produce and refine of the natural gas, and one of the most common method is adsorption process. In this study, modeling and simulation of the adsorption process in the packed bed of zeolite 4A has been done. This research includes four steps, first, adsorption process and all types of adsorbent were investigated. Second, using rigorous solution method, equations of mass and energy balance derived. Third, using the collocation method and MATLAB programing, system equations of mass and energy was solved. Finally, accuracy of simulation... 

    Modeling the Kinetics of Sulfur Oxides Adsorption-desorption on a Pt/γ-Al2O3 Catalyst as Diesel Oxidation Catalyst (DOC)

    , M.Sc. Thesis Sharif University of Technology Farzi, Amir Hossein (Author) ; Hamzeh Louyan, Tayyebeh (Supervisor)
    Abstract
    Sulfur oxides are categorized as one of the most important poisoning and activity-reducer groups acting on the catalytic converters present in the exhaust treatment systems. In the present work, interactions of the SOX species with diesel oxidation catalysts (DOCs) are investigated by implementing a kinetic modeling approach. Experimental data obtained from a catalyst of this type, i.e., Pt/γ-Al2O3, was employed and a multi-step microkinetic model was developed in Matlab 2018b® to proxy the poisoning effect of the adsorption of surface sulfur species and their desorption behavior. The microkinetic model was run to describe the individual SO2 and SO3 adsorption-desorption process using the... 

    Kinetic and Equilibrium Modeling of The Gas Adsorption on Adsorbent by Multilayer and Monolayer Adsorption Mechanism

    , M.Sc. Thesis Sharif University of Technology Bidaki, Amin (Author) ; Ghotbi, Cyrus (Supervisor) ; Jafari Behbahani, Taraneh (Supervisor)
    Abstract
    gas adsorption in porous solids and adsorbent,is the important cases in gas processing industries. Including the removal of compounds such as carbon dioxide, hydrogen sulfide and mercaptans from sour gas in natural gas sweetening industry is of great importance.Also in solving the greenhouse phenomena extraction of gases such as methane and carbon dioxide of important environmental issues.To understand and predict the behavior of the absorption capacity of various adsorbents and thus the possibility of absorption systems, a mathematical model is needed.Library resources available in order to determine the kinetics and thermodynamic processes of gas adsorption on solid absorbents use... 

    Thermodynamic Modeling of CO2 Gas Adsorption on Zeolite 4A

    , M.Sc. Thesis Sharif University of Technology Sarvi, Amin (Author) ; Ghotbi, Cyrus (Supervisor) ; Taghikhani, Vahid (Co-Advisor)
    Abstract
    This project simulates the absorption of carbon dioxide absorbent on 4A zeolite is carried out using Monte Carlo simulation. VBA is a programming language and software used. Grand Canonical simulations performed on a set of particles (Grand Canonical) intended to present new algorithms and computational simulations are presented. Density fluctuations in the algorithms used and the smallest value of less than 0.2 is considered. In the new method of modeling, simulation node cell packing and moving is done on a given node. Adsorption density results obtained from the simulation carried out shows that the adsorption process is the logical and reasonable. Also, the part of the validation of the... 

    CFD Modeling of Ammonia Release and Water Curtain for Mitigation

    , M.Sc. Thesis Sharif University of Technology Khajehpour, Amir Hossein (Author) ; Rashtchian, Davoud (Supervisor)
    Abstract
    The release of toxic materials causes tragic accidents every year. There are various techniques in order to mitigate the release effect of these materials such as Application of air jets, steam curtains and water curtains. This study presents numerical calculations to reproduce the continuous ammonia release dispersion with and without the mitigating influence of a downwind water curtain using computational fluid dynamic (CFD) software ANSYS Fluent 15.0. The RNG model coupled with Lagrangian discrete phase model (DPM) was used to simulate the dilution effectiveness of the water curtain system. The ammonia absorption was taken into account by means of user-defined functions (UDF). The...