Loading...
Search for: afm
0.013 seconds
Total 111 records

    Dynamics of the nanoneedle probe in trolling mode AFM

    , Article Nanotechnology ; Volume 26, Issue 20 , April , 2015 ; 09574484 (ISSN) Abdi, A ; Pishkenari, H. N ; Keramati, R ; Minary Jolandan, M ; Sharif University of Technology
    Institute of Physics Publishing  2015
    Abstract
    Atomic force microscopy (AFM), as an indispensable tool for nanoscale characterization, presents major drawbacks for operation in a liquid environment arising from the large hydrodynamic drag on the vibrating cantilever. The newly introduced 'Trolling mode' (TR-mode) AFM resolves this complication by using a specialized nanoneedle cantilever that keeps the cantilever outside of the liquid. Herein, a mechanical model with a lumped mass was developed to capture the dynamics of such a cantilever with a nanoneedle tip. This new developed model was applied to investigate the effects of the needle-liquid interface on the performance of the AFM, including the imaging capability in liquid  

    Thermo- and pH-sensitive dendrosomes as bi-phase drug delivery systems

    , Article Nanomedicine: Nanotechnology, Biology, and Medicine ; Volume 9, Issue 8 , 2013 , Pages 1203-1213 ; 15499634 (ISSN) Adeli, M ; Fard, A. K ; Abedi, F ; Chegeni, B. K ; Bani, F ; Sharif University of Technology
    2013
    Abstract
    Fully supramolecular dendrosomes (FSD) as bi-phase drug delivery systems are reported in this work. For preparation of FSD, amphiphilic linear-dendritic supramolecular systems (ALDSS) have been synthesized by host-guest interactions between hyperbranched polyglycerol having β-cyclodextrin core and bi-chain polycaprolactone (BPCL) with a fluorescine focal point. Self-assembly of ALDSS in aqueous solutions led to FSD. They were able to encapsulate paclitaxel with a high loading capacity. The dendrosome-based drug delivery systems were highly sensitive to pH and temperature. They were stable at 20-37. °C and pH7-8, but dissociated and released drug at temperatures lower than 20. °C or higher... 

    Effect of chemical substitution on the morphology and optical properties of Bi1-xCaxFeO3 films grown by pulsed-laser deposition

    , Article Journal of Materials Science: Materials in Electronics ; Volume 24, Issue 1 , 2013 , Pages 248-252 ; 09574522 (ISSN) Ahadi, K ; Mahdavi, S. M ; Nemati, A ; Sharif University of Technology
    2013
    Abstract
    The morphological characteristics as well the optical properties of Ca-doped BiFeO3 films grown by pulsed-laser deposition technique have been investigated. AFM images revealed that calcium has a radical effect on the surface features of BiFeO3 films. By utilizing spectrophotometer, transmission behaviour of the films was investigated. Local IV characteristics of the films disclosed about three orders of magnitude enhancement concerning electrical conductivity through Ca doping. X-ray photoelectron spectroscopy results revealed that Ca can reduce the valence state of iron in the compound  

    Electronic structure and morphological study of BaTiO 3 film grown by pulsed-laser deposition

    , Article Materials Letters ; Volume 72 , April , 2012 , Pages 107-109 ; 0167577X (ISSN) Ahadi, K ; Mahdavi, S. M ; Nemati, A ; Tabesh, M ; Ranjbar, M ; Sharif University of Technology
    Abstract
    The morphological characteristics and electronic structure of the BaTiO 3 films grown by pulsed-laser deposition technique have been investigated. AFM and FE-SEM images reveal columnar growth characteristic of these films. Utilizing spectrophotometer, optical band gap of the films were reckoned to be about 3.76 eV. Both dα/dE and PL vs. E plots reveal numerous luminance states in the gap. Despite the presence of many luminance faults in the gap, cations manage to preserve their electronic states  

    Torsional sensitivity and resonant frequency of an AFM with parallel sidewall probes

    , Article Proceedings of the ASME Design Engineering Technical Conference, 15 August 2010 through 18 August 2010, Montreal, QC ; Volume 5 , 2010 , Pages 987-996 ; 9780791844137 (ISBN) Ahmadian, M. T ; Kahrobaiyan, M. H ; Haghighi, P ; Yousefi, A ; Sharif University of Technology
    2010
    Abstract
    The resonant frequencies and torsional sensitivities of an atomic force microscope (AFM) assembled cantilever probe which comprises a horizontal cantilever, two vertical extensions and two tips located at their free ends are studied. This probe makes the AFM capable of measuring, for instance, the outer/inner diameter, roundness and roughness of microstructures like micro-holes and micro nozzles which leads to a time-saving swift scanning process. In this work, the effects of the sample surface contact stiffness and the geometrical parameters such as the ratio of the vertical extension length to the horizontal cantilever length and the distance of the first vertical extension from the... 

    Mechano-chemical AFM nanolithography of metallic thin films: A statistical analysis

    , Article Current Applied Physics ; Volume 10, Issue 4 , 2010 , Pages 1203-1210 ; 15671739 (ISSN) Akhavan, O ; Abdolahad, M ; Sharif University of Technology
    2010
    Abstract
    A mechano-chemical atomic force microscope (AFM) nanolithography on a metallic thin film (50 nm in thickness) covered by a spin-coated soft polymeric mask layer (50-60 nm in thickness) has been introduced. The surface stochastic properties of initial grooves mechanically patterned on the mask layer (grooves before chemical wet-etching) and the lithographed patterns on the metallic thin film (the grooves after chemical wet-etching) have been investigated and compared by using the structure factor, power spectral density, and AFM tip deconvolution analyses. The effective shape of cross section of the before and after etching grooves have been determined by using the tip deconvolution surface... 

    AFM spectral analysis of self-agglomerated metallic nanoparticles on silica thin films

    , Article Current Nanoscience ; Volume 6, Issue 1 , 2010 , Pages 116-123 ; 15734137 (ISSN) Akhavan, O ; Sharif University of Technology
    2010
    Abstract
    Stochastic parameters of self-agglomerated metallic nanoparticles on a dielectric film surface were studied using atomic force microscopy (AFM) analysis. In this regard, the rough surfaces including the nanoparticles were analyzed and characterized using structure function, roughness exponent and power spectrum density of the AFM profiles and their gradients, for different metal concentrations and heat treatment temperatures. The diffusion parameters, such as activation energy, of the nanoparticles initially accumulated on the surface into a porous and aqueous silica thin film were obtained using the AFM spectral analysis of the profiles and their gradients. It was found that the tip... 

    Physical bounds of metallic nanofingers obtained by mechano-chemical atomic force microscope nanolithography

    , Article Applied Surface Science ; Volume 255, Issue 6 , January , 2009 , Pages 3513-3517 ; 01694332 (ISSN) Akhavan, O ; Abdolahad, M ; Sharif University of Technology
    2009
    Abstract
    To obtain metallic nanofingers applicable in surface acoustic wave (SAW) sensors, a mechano-chemical atomic force microscope (AFM) nanolithography on a metallic thin film (50 nm in thickness)/piezoelectric substrate covered by a spin-coated polymeric mask layer (50-60 nm in thickness) was implemented. The effective shape of cross-section of the before and after etching grooves have been determined by using the AFM tip deconvolution surface analysis, structure factor, and power spectral density analyses. The wet-etching process improved the shape and aspect ratio (height/width) of the grooves and also smoothed the surface within them. We have shown that the relaxed surface tension of the... 

    AFM stochastic analysis of surface twisted nanograin chains of iron oxide: a kinetic study

    , Article Journal of Physics D: Applied Physics ; Volume 42, Issue 6 , 2009 ; 00223727 (ISSN) Akhavan, O ; Azimirad, R ; Sharif University of Technology
    2009
    Abstract
    We have studied the stochastic parameters of surface iron oxide nanograin chains, 97 nm in diameter and 2.4 νm in length, prepared at different annealing temperatures, using atomic force microscopy (AFM) spectral analysis. In this regard, the roughness of the thin films including self-assembled twisted nanograin chains has been analysed and characterized using the height-height correlation function, the roughness exponent as well as the power spectrum density of the AFM profiles and their gradient, for the different annealing temperatures. The tip convolution effect on the stochastic parameters under study has also been investigated. The kinetics of the formation of nanograins on the film... 

    Optimal sliding mode control of AFM tip vibration and position during manipulation of a nanoparticle

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings ; Vol. 12, Issue. PART A , 2010 , pp. 205-214 ; ISBN: 9780791843857 Babahosseini, H ; Khorsand, M ; Meghdari, A ; Alasty, A ; Sharif University of Technology
    Abstract
    This research regards to a two-dimensional lateral pushing nanomanipulation using Atomic Force Microscope (AFM). Yet a reliable control of the AFM tip position during the AFM-based manipulation process is a chief issue since the tip can jump over the target nanoparticle and then the process can fail. However, a detailed Modeling and understanding of the interaction forces on the AFM tip is important for prosperous manipulation control and a nanometer resolution tip positioning. In the proposed model, Lund-Grenoble (LuGre) dynamic friction model is used as friction force on the contact surface between the nanoparticle and the substrate. This model leads to a stick-slip behavior of the... 

    Optimal sliding mode control for Atomic Force Microscope tip positioning during nano-manipulation process

    , Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 2285-2296 ; 10263098 (ISSN) Babahosseini, H ; Mahboobi, S. H ; Vakilzadeh, M. K ; Alasty, A ; Meghdari, A ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    This research presents two-dimensional controlled pushing-based nanomanipulation using an Atomic Force Microscope (AFM). A reliable control of the AFM tip position is crucial to AFM-based manipulation since the tip can jump over the target nanoparticle causing the process to fail. However, detailed modeling and an understanding of the interaction forces on the AFM tip have a central role in this process. In the proposed model, the Lund-Grenoble (LuGre) method is used to model the dynamic friction force between the nanoparticle and the substrate. This model leads to the stick-slip behavior of the nanoparticle, which is in agreement with the experimental behavior at nanoscale. Derjaguin... 

    Optimal sliding mode control of AFM tip vibration and position during manipulation of a nanoparticle

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009, Lake Buena Vista, FL ; Volume 12, Issue PART A , 2010 , Pages 205-214 ; 9780791843857 (ISBN) Babahosseini, H ; Khorsand, M ; Meghdari, A ; Alasty, A ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2010
    Abstract
    This research regards to a two-dimensional lateral pushing nanomanipulation using Atomic Force Microscope (AFM). Yet a reliable control of the AFM tip position during the AFM-based manipulation process is a chief issue since the tip can jump over the target nanoparticle and then the process can fail. However, a detailed Modeling and understanding of the interaction forces on the AFM tip is important for prosperous manipulation control and a nanometer resolution tip positioning. In the proposed model, Lund-Grenoble (LuGre) dynamic friction model is used as friction force on the contact surface between the nanoparticle and the substrate. This model leads to a stick-slip behavior of the... 

    Dynamics modeling of nanoparticle in AFM-based manipulation using two nanoscale friction models

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009 ; Volume 12, Issue PART A , 2010 , Pages 225-234 ; 9780791843857 (ISBN) Babahosseini, H ; Mahboobi, S. H ; Meghdari, A ; Sharif University of Technology
    Abstract
    Application of atomic force microscope (AFM) as a manipulator for pushing-based positioning of nanoparticles has been of considerable interest during recent years. Nevertheless comprehensive researches has been done on modeling and the dynamics analysis of nanoparticle behavior during the positioning process. The development of dynamics modeling of nanoparticle is crucial to have an accurate manipulation. In this paper, a comprehensive model of pushing based manipulation of a nanoparticle by AFM probe is presented. The proposed nanomanipulation model consists of all effective phenomena in nanoscale. Nanoscale interaction forces, elastic deformation in contact areas and friction forces in... 

    Dynamic modeling and sensitivity analysis of atomic force microscope pushing force in nanoparticle manipulation on a rough substrate [electronic resource]

    , Article Journal of Advanced Science, Engineering and Medicine ; 2013, Vol. 5, pp. 1-10 Babahosseini, H. (Hesam) ; Mahboobi, Seyed Hanif ; Meghdari, Ali ; Sharif University of Technology
    Abstract
    An Atomic Force Microscope (AFM) is a capable tool to manipulate nanoparticles by exerting pushing force on the nanoparticles located on the substrate. In reality, the substrate cannot be considered as a smooth surface particularly at the nanoscale. Hence, the particle may encounter a step on the substrate during a manipulation. In this study, dynamics of the nanoparticle on a stepped substrate and critical pushing force in the manipulation are investigated. There are two possible dynamic modes that may happen in the manipulation on the stepped substrate. In one mode, the nanoparticle may slide on the step edge and then climb up to the step which is a desired mode. Another possible mode is... 

    Development of nanostructured porous TiO2 thick film with uniform spherical particles by a new polymeric gel process for dye-sensitized solar cell applications

    , Article Electrochimica Acta ; Volume 89 , February , 2013 , Pages 90-97 ; 00134686 (ISSN) Bakhshayesh, A. M ; Mohammadi, M. R ; Sharif University of Technology
    2013
    Abstract
    A novel simple synthetic procedure for fabrication of high surface area nanostructured TiO2 electrode with uniform particles for photovoltaic application is reported. Modifying the TiO2 particulate sol by pH adjustment together with employment of a polymeric agent, so-called polymeric gel process, was developed. The polymeric gel process was used to deposit nanostructured thick electrode by dip coating incorporated in dye-sensitized solar cells (DSSCs). X-ray diffraction (XRD) analysis revealed that deposited film was composed of primary nanoparticles with average crystallite size in the range 21-39 nm. Field emission scanning electron microscope (FE-SEM) images showed that deposited film... 

    Preparation of uniform TiO2 nanostructure film on 316L stainless steel by sol-gel dip coating

    , Article Applied Surface Science ; Volume 255, Issue 20 , 2009 , Pages 8328-8333 ; 01694332 (ISSN) Barati, N ; Sani, M. A. F ; Ghasemi, H ; Sadeghian, Z ; Mirhoseini, S. M. M ; Sharif University of Technology
    2009
    Abstract
    Sol was prepared by the mixing of tetra-η-butyle titanat, ethyl aceto acetate, and ethanol in an optimized condition. Polished 316L specimens were coated with the sol by dip-coating method. The influences of drying condition, withdrawal speed, calcination temperature, addition of dispersant, and pH of sol on TiO2 nanostructure coating were investigated. Choosing of alcohol as drying atmosphere hindered the crack formation. The relation between coating thickness and withdrawal speed was evaluated. The optimum temperature to create a uniform distribution of nanoparticles of anatase was derived as 400 °C. Average roughness of coating was found about 10.61 nm by AFM analysis. Dispersant addition... 

    Novel nano-porous hydrogel as a carrier matrix for oral delivery of tetracycline hydrochloride

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 392, Issue 1 , December , 2011 , Pages 16-24 ; 09277757 (ISSN) Bardajee, G. R ; Pourjavadi, A ; Soleyman, R ; Sharif University of Technology
    Abstract
    A novel nano-porous hydrogel (NPH) was synthesized via graft copolymerization of sodium acrylate (Na-AA) and acrylamide (AAm) onto salep backbones and its application as a carrier matrix for oral delivery of tetracycline hydrochloride (TH) was investigated. The Taguchi method as a strong experimental design tool was used for synthesis optimization. The swelling behavior of optimum hydrogel was measured in various media. The hydrogel formation was confirmed by Fourier transform infrared spectroscopy (FT-IR) and thermogravimetrical analysis (TGA). The study of the surface morphology of the hydrogels using SEM and AFM showed a nanoporous (average pore size: 180. nm) structure for the sample... 

    On the photocatalytic activity of the sulfur doped titania nano-porous films derived via micro-arc oxidation

    , Article Applied Catalysis A: General ; Volume 389, Issue 1-2 , 2010 , Pages 60-67 ; 0926860X (ISSN) Bayati, M. R ; Moshfegh, A. Z ; Golestani Fard, F ; Sharif University of Technology
    2010
    Abstract
    Sulfur doped TiO2 layers containing nano/micro-sized pores were synthesized by micro-arc oxidation process. Effect of the applied voltage and the electrolyte composition on physical and chemical properties of the layers was investigated using SEM, AFM, XRD, XPS, and EDS techniques. A UV-vis spectrophotometer was also used to study optical properties of the layers. It was found that the doped layers were porous with a pore size of 40-170 nm. They consisted of anatase and rutile phases with varying fraction depending on the applied voltage and electrolyte concentration. Our XPS investigations revealed the existence of sulfur in the forms of S4+ and S6+ states which substituted Ti4+ in the... 

    (WO3)x-(TiO2)1-x nano-structured porous catalysts grown by micro-arc oxidation method: Characterization and formation mechanism

    , Article Materials Chemistry and Physics ; Volume 124, Issue 1 , 2010 , Pages 203-207 ; 02540584 (ISSN) Bayati, M. R ; Moshfegh, A. Z ; Golestani Fard, F ; Molaei, R ; Sharif University of Technology
    2010
    Abstract
    Very recently, we fabricated (WO3)x-(TiO 2)1-x layers via micro-arc oxidation process under different applied voltages. Morphological and topographical studies, accomplished by SEM and AFM techniques, revealed that the pores size as well as the surface roughness increased with the voltage. Phase structure and chemical composition of the layers were also investigated by XRD and XPS and the results showed the grown layers consisted of titanium and tungsten oxides. It was found that WO3 dispersed in the TiO2 matrix and also doped into the TiO2 lattice. In addition, optical properties of the synthesized layers were studied employing a UV-vis spectrophotometer. Band gap energy of the layers was... 

    How photocatalytic activity of the MAO-grown TiO2 nano/micro-porous films is influenced by growth parameters?

    , Article Applied Surface Science ; Volume 256, Issue 13 , 2010 , Pages 4253-4259 ; 01694332 (ISSN) Bayati, M. R ; Golestani Fard, F ; Moshfegh, A. Z ; Sharif University of Technology
    2010
    Abstract
    Pure titania porous layers consisted of anatase and rutile phases, chemically and structurally suitable for catalytic applications, were grown via micro-arc oxidation (MAO). The effect of applied voltage, process time, and electrolyte concentration on surface structure, chemical composition, and especially photocatalytic activity of the layers was investigated. SEM and AFM studies revealed that pore size and surface roughness of the layers increased with the applied voltage, and the electrolyte concentration. Moreover, the photocatalytic performance of the layers synthesized at medium applied voltages was significantly higher than that of the layers produced at other voltages. About 90% of...