Loading...
Search for: air-cooling
0.01 seconds
Total 30 records

    Investigations of Cooling Process and Edge Effects in Sheet Metal Forming by using the Line Heating Technique

    , M.Sc. Thesis Sharif University of Technology Shahidi, Ali (Author) ; Assempour, Ahmad (Supervisor)
    Abstract
    Sheet metals are widely used in different industries such as ship building and pressure vessels. In these industries, One important problem is Line Heating Forming. This method needs simple initial equipment and is economically advantageous.In this research heat transfer between gas torch and plate, cooling effects and edge effects are studied more precise. Impingement jet model is used to simulate effect of heat source (flame) and cooling air on plate. The temperature distribution in sheet metal due to the rates of cooling air and heated gas (flame) are calculated by using commercial engineering software, Fluent. Then, the computed temperature field by FLUENT is fed into the ANSYS FEM... 

    Numerical Study of Flow and Heat Transfer Around a Rotor

    , M.Sc. Thesis Sharif University of Technology Gerami, Mohammad (Author) ; Nouri Borujerdi, Ali (Supervisor)
    Abstract
    The purpose of this study is to investigate the distribution of air flow and temperature in electric machines. The fluid flow equations are solved by using the characteristic Galerkin. The unsteady equations of the air flow and heat transfer between the rotor, stator and radial cooling channels of the generator are solved by finite element method. Tetrahedral elements are used, but hexahedral elements can also be used. The upwind method is used to discretize the convection terms, but the central difference for the diffusion parts, that is equal to Petrov-Galerkin method in steady state situation. Due to the large number of channels and specific geometry, to reduce the computation costs, the... 

    Aerothermodynamically Re-Design of an Air-Cool Heat Exchanger Fin Configuration Utilized for Cooling the Lubricating Oil of a Gas Turbine Unit Benefiting from Numerical Simulation

    , M.Sc. Thesis Sharif University of Technology Kargarian, Abbas (Author) ; Darbandi, Masoud (Co-Advisor)
    Abstract
    The lubricating oil is commonly used to cool down the moving parts of turbine gas systems. In many applications, this oil is cooled down using a recirculating water circuit. The water is then cooled down using an air-cooled heat exchanger. Any deficiency in aerothermodynamic design of such heat exchanger would result in high temperature of gas turbine moving parts such as bearings. Obviously, this mal-performance has adverse effect on the lifetime of these parts and their maintanence aspects. Since the good performance of air-cooled heat exchanger has numerous advantages for the performance of related gas turbine unit, it is mandatory to design these heat exchangers in minimum sizes and... 

    Optimization Model of Water-energy Nexus in the Cooling Towers

    , M.Sc. Thesis Sharif University of Technology Shokri Motlagh, Shamim (Author) ; Avami, Akram (Supervisor)
    Abstract
    One of the best ways to reduce water consumption is using air cooled heat exchangers, because they work in a completely closed cycle which does not require makeup water. However because of their high surface area and high-technology production method, their production cost is significantly high. Air cooled heat exchangers have relatively high exergy destruction because of low U heat-transfer coefficient. In present research, single-objective and multiple objective optimization problems are developed to minimize total annual cost and exergy destruction. Also the influence of temperature changes on these two objective functions have been evaluated by Monte Carlo simulation. In next step,... 

    Study and Practical Solutions to Reduce the Heat Load Air Cooler in unit 200 Bouali Sina Petrochemical Co. to Reduce the Flaring

    , M.Sc. Thesis Sharif University of Technology Mohebbifar, Majid (Author) ; Farhadi, Fatollah (Supervisor)
    Abstract
    Inappropriate performance of the air-cooled condensers in the process industry will make the flow out of the air cooler not fully condensate and its pressure is greater than the design value. This will lead to product loss and safety issues. In this study, factors affecting the performance of air cooler and various solutions to solve these problems have been identified. As a case study, the first distillation tower of the Ali Siana Petrochemical Complex, which disrupts its function in some months of the year, has been investigated. Aspen Hysys process simulation software simulates the naphtha splitter unit and the Aspen Exchangers Design & Rating software simulates the air cooled condesor... 

    Use of Numerical Simulation to Study the Reduction of Steam Turbine Back Pressure Via Implementing Heat Pipe in Upstream Air Condenser

    , M.Sc. Thesis Sharif University of Technology Mashayekh, Kazem (Author) ; Darbandi, Masoud (Supervisor)
    Abstract
    Iran's experience shows that either single or combined power generation cycles, face heavy summer performance deficiencies. The most limitation of power generation in steam cycles is due to their poor condenser performance.The less condenser performance, the more turbine back pressure, and the more turbine back pressure, the less cycle power generation. The main objective of the present study is to reduce steam turbine back pressure in the combined cycle of an organic Rankine-vapor compression refrigeration by installing heat pipes in suitable locations inside the Air cooled condense (ACC). In order to do so, a commercial numerical simulation solver (FLUENT) is used to find the most suitable... 

    Using Aerodynamic Obstacles to Increase the Thermal Performance of Power Plant Cooling Systems Consisting of Air Cooled Condenser

    , M.Sc. Thesis Sharif University of Technology Niyafar, Omid (Author) ; Darbandi, Massoud (Supervisor)
    Abstract
    According to the recent researches it has been found that wind can reduce the efficiency of Air Cooled Condensers (ACC) which use for cooling purposes in power plants. Wind affects the natural suction of the cooling air and makes local low pressure area in fan’s inlet results to disrupt its normal performance. Using aerodynamic obstacles inside and around the condensers can compensate this lack of performance when there is strong wind. In this thesis with the aid of computational fluid dynamics, condenser’s behavior with various weather situations is studied. Simulation in no wind situation and different wind speeds is considered and accomplished with Gambit Fluent software. This simulation... 

    Improvement of a Steam Turbine Performance in a Combined Power Cycle Benefiting from Aerodynamics Solutions Applied on its Air-Cooled Condenser

    , M.Sc. Thesis Sharif University of Technology Khorshidi Behzadi, Hamid Reza (Author) ; Darbandi, Masoud (Supervisor)
    Abstract
    Air-cooled condenser is widely used in thermal power plants as its main cooling system. However, the thermal capacity of air-cooled condensers reduces considerably in environmental wind drafts. So, the purpose of this study is to find practicable solutions to minimize the mal-performance of air-cooled condensers in windy conditions in either design or off-design conditions and consequently prevent the related steam turbines power reduction. The target combined cycle power plant consists of 4*160 MW steam turbines and 4 air-cooled condensers in its steam cycle part. This research presents two general and practical remedies, which are also applicable to many different powerplants irrespective... 

    Numerical Simulation to Improve the Performance of Air-cooled Steam Condenser Ejector and Steam Turbine Operation in a Rankine Cycle

    , M.Sc. Thesis Sharif University of Technology Sabzpoushan, Ali (Author) ; Darbandi, Masoud (Supervisor)
    Abstract
    Nowadays, widespread needs for creating low pressure ambient in various industries make vacuum systems have different research and industrial applications. One of these applications is in cooling system of Rankine power cycle. In this case, the performance of the vacuum system has a direct and significant effect on the cooling performance of the condenser and consequently, power production of the steam turbine. Also, a considerable part of deration in thermal power plants industry is due to the thermal deration of the cooling systems. This is mostly because of malfunction of the condenser due to ambient temperature rise. Therefore, by providing suitable solutions to improve the efficiency... 

    Optimization of 18650 Cells Arrangement in Tesla Battery Pack with Active, Passive and Hybrid Cooling Systems

    , M.Sc. Thesis Sharif University of Technology Shamekhi, Alireza (Author) ; Aryanpour, Masoud (Supervisor)
    Abstract
    In this study, three active, passive, and hybrid thermal management systems are applied to a lithium battery module with industrial specifications, i.e., Tesla battery module, and the optimal conditions are extracted. The thermal and electrochemical behavior of battery cells is modeled using the quasi-two-dimensional approach by Newman’s method. The effects of inter-cellular distance on the maximum temperature and on the temperature distribution in the pack as the target variables are thoroughly investigated. A suitable range for the above distances is then determined in order to reduce the overall cooling power and the expected thermal performance of the pack. The results of temperature... 

    The study of air-cooled condenser in high wind velocity and environmental temperature conditions

    , Article 52nd AIAA Aerospace Sciences Meeting - AIAA Science and Technology Forum and Exposition, SciTech 2014 ; 2014 ; ISBN: 9781624102561 Darbandi, M ; Behrouzifar, A ; Salemkar, H ; Schneider, G. E ; Sharif University of Technology
    Abstract
    The use of air-cooled condenser (ACC) has become very popular in erecting thermal powerplants around the world since two or three decades ago. The advantages of forced convection heat cooling system, instead of the classical natural draught convection heat transfer cooling systems, promote the thermal powerplant designers and users to benefit more from such systems in their thermodynamics cycles. However, such forced convection heat transfer mechanisms, can lose their cooling efficiency in off-design ambient conditions, i.e., in high wind velocity and high ambient temperature conditions. There have already been some efforts to analyze the reduction of ACC System performance in some critical... 

    Effect of molybdenum on grain boundary segregation in Incoloy 901 superalloy

    , Article Materials and Design ; Volume 46 , 2013 , Pages 573-578 ; 02641275 (ISSN) Tavakkoli, M. M ; Abbasi, S. M ; Sharif University of Technology
    2013
    Abstract
    In this paper, the effect of molybdenum on the grain boundary segregation of other elements was studied in Incoloy 901 superalloy. Initially, five alloys were prepared with different percentages of Mo by using a vacuum induction furnace. Then, these alloys were remelted by Electro-slag remelting (ESR) process and after homogenizing at 1160 °C for 2. h followed by air cooling, were rolled. The effect of Mo on segregation of elements was evaluated with Scanning Electron Microscopy, Linear Analysis, and the mechanical tests. The results showed that the grain boundary segregations of elements in Incoloy 901 superalloy were decreased by increasing of molybdenum content up to 6.7% and the... 

    Microstructural evolution in damaged IN738LC alloy during various steps of rejuvenation heat treatments

    , Article Journal of Alloys and Compounds ; Volume 512, Issue 1 , January , 2012 , Pages 340-350 ; 09258388 (ISSN) Hosseini, S. S ; Nategh, S ; Ekrami, A. A ; Sharif University of Technology
    2012
    Abstract
    IN738LC is one of the superior nickel base superalloys utilized at high temperatures in aggressive environments. However, experiencing high temperatures and stresses during service causes microstructure deterioration and degradation of mechanical properties in this alloy. To restore the microstructure and mechanical properties of the degraded alloy, rejuvenation heat treatments can be considered. In this study, the evolution of microstructural features in a creep damaged IN738LC superalloy during different stages of rejuvenation heat treatment cycles was investigated. During solution treatment stage, dissolution of coarsened γ′ precipitates, grain boundary films and transition zone around... 

    Analysis of dehumidification effects on cooling capacity of an evaporative cooler

    , Article Journal of Thermal Science and Technology ; Volume 5, Issue 1 , 2010 , Pages 151-164 ; 18805566 (ISSN) Saidi, M. H ; Aghanajafi, C ; Mohammadian, M ; Sharif University of Technology
    2010
    Abstract
    In this study, effect of desiccant wheel, heat exchanger and cooling coil will be evaluated on decreasing the wet bulb temperature of entering air to cooling tower and decreasing the outlet cold water temperature. For this purpose, change effect of desiccant wheel parameters will be investigated on wet bulb temperature of outlet air from heat exchanger. After that, optimum parameters and minimum wet bulb temperature will be selected. Then, outlet cold water temperature will be achieved for various cooling coil surface temperature with definition of by pass factor and also by using optimum desiccant wheel parameters and entrance air wet bulb temperature to tower related to cooling coil... 

    Investigations on the effects of the tool material, geometry, and tilt angle on friction stir welding of pure titanium

    , Article Journal of Materials Engineering and Performance ; Volume 19, Issue 7 , 2010 , Pages 955-962 ; 10599495 (ISSN) Reshad Seighalani, K ; Besharati Givi, M. K ; Nasiri, A. M ; Bahemmat, P ; Sharif University of Technology
    2010
    Abstract
    Friction stir welding (FSW) parameters, such as tool material, tool geometry, tilt angle, tool rotational speed, welding speed, and axial force play a major role in the weld quality of titanium alloys. Because of excessive erosion, tool material and geometry play the main roles in FSW of titanium alloys. Therefore, in the present work for the first time, tool material and geometry, tool tilt angle, cooling system and shielding gas effects on macrostructure, microstructure, and mechanical properties of pure titanium weld joint were investigated. Result of this research shows that Ti can be joined by the FSW, using a tool with a shoulder made of tungsten (W) and simple pin made of tungsten... 

    Microstructural study of a High Bainite Dual Phase (HBDP) steel austempered at different temperatures

    , Article Defect and Diffusion Forum ; Volume 297-301 , 2010 , Pages 62-67 ; 10120386 (ISSN); 3908451809 (ISBN); 9783908451808 (ISBN) Bakhtiari, R ; Ekrami, A ; Sharif University of Technology
    Trans Tech Publications Ltd  2010
    Abstract
    4340 steel bars were austenitized at 850°C for 1 hour followed by heating at 700°C (ferrite and austenite region) for 90 min and quenching into a salt bath with different temperatures of 300, 350, 400 and 450°C. The steel bars were held for 1 hour at these temperatures before air cooling to room temperature. Various ferrite-bainite microstructures with 34% volume fraction of ferrite and different bainite morphologies were obtained. The results of SEM studies showed that by increasing the austempering temperature, the morphology of bainite varies from lower to upper bainite. According to the T-T-T diagram of the studied steel, the bainite transformation will not complete for the holding time... 

    Energy and exergy analysis of a gas turbine power plant with inlet evaporating cooling systems

    , Article 23rd International Conference on Efficiency, Cost, Optimization, Simulation, and Environmental Impact of Energy Systems, 14 June 2010 through 17 June 2010 ; Volume 4 , 2010 , Pages 203-210 ; 9781456303181 (ISBN) Ameri, M ; Karimi, M ; Ahmadi, P ; Ecole Polytechnique Federale de Lausanne; Schweizerische Eidgenossenschaft ; Sharif University of Technology
    Aabo Akademi University 
    Abstract
    The gas turbine (GT) is known to feature low capital cost to power ratio, high flexibility, high reliability without complexity, short delivery time, early commissioning and commercial operation and fast starting-accelerating. Hence, researchers all over the world are working to increase the output power and efficiency of gas turbine cycle. One of the important techniques to increase the output power of such cycles is the compressor inlet air cooling method. The objective of this paper is to analysis the gas turbine cycle from both energy and exergy point of view. Thus, two important methods for increasing the output power, i.e. fog and media inlet air cooling systems are discussed.... 

    Experimental investigation of the effects of corona wind on the performance of an air-cooled PV/T

    , Article Renewable Energy ; Volume 127 , 2018 , Pages 284-297 ; 09601481 (ISSN) Golzari, S ; Kasaeian, A ; Amidpour, M ; Nasirivatan, S ; Mousavi, S ; Sharif University of Technology
    Abstract
    In the present study, enhancing the heat transfer is experimentally investigated by the electro-hydrodynamics (EHD) through a single-pass air-cooled PV/T (Photovoltaic/Thermal System). The corona wind increases the heat transfer coefficient by producing a secondary flow and vortex, and consequently, increases the PV/T system efficiency. The effects of the corona wind are studied by changing the voltage values and the flow rates in the air channel. The results show that the corona wind is effective on enhancing the system performance; so that the heat transfer coefficient increases by 65% in natural flow regime by applying 11 kV voltage in the pilot setup. Totally, the thermal efficiency of... 

    Using CFD simulations to improve the air-cooled steam condenser performance in severe windy conditions via proper tuning of blades pitch angles

    , Article ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting, FEDSM 2018, 15 July 2018 through 20 July 2018 ; Volume 2 , 2018 ; 08888116 (ISSN); 9780791851562 (ISBN) Darbandi, M ; Farhangmehr, V ; Khorshidi Behzadi, H. R ; Schneider, G. E ; Fluids Engineering Division ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2018
    Abstract
    The use of air-cooled steam condenser (ACSC) in thermal power plants has become so normal since a few decades ago. It is because there are so many valuable advantages with the ACSC implementation, e.g., little dependency on water consumption and benefiting from the forced convection heat transfer instead of the natural one to condense the steam. However, the thermal performance of an ACSC can be readily defected by the ambient wind; specifically, when the ambient temperature is high. This research work benefits from the computational fluid dynamics tool to study the details of ACSC's thermal performance in such undesirable ambient windy conditions. Furthermore, this work suggests an... 

    Uniform cooling of a flat surface by an optimized array of turbulent impinging air jets

    , Article Heat Transfer Engineering ; Volume 40, Issue 20 , 2019 , Pages 1750-1761 ; 01457632 (ISSN) Sedighi, E ; Mazloom, A ; Hakkaki Fard, A ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    The aim of this study is to investigate the uniform cooling of a hot isothermal heated target surface, using four turbulent impinging air jets. Eight parameters including the width of jets, the space between the inner jets, the space between inner and outer jets, the distance of jets from the plate, the impingement angle of jets, and the overall volumetric flow rate of the cooling air per unit depth of the nozzle are considered as design variables. The normalized standard deviation of the local Nusselt number from the desired Nusselt number is considered as the objective function. An optimization algorithm based on pattern search method is utilized to obtain the optimum array of the jets....