Loading...
Search for: alkaline-earth-metal
0.005 seconds

    Amino acids and their complex formation properties with divalent metal ions, a comparative investigation of structure and stability in binary systems

    , Article Current Pharmaceutical Analysis ; Volume 10, Issue 2 , 2014 , Pages 122-134 ; ISSN: 15734129 Sajadi, S. A. A ; Sharif University of Technology
    Abstract
    A comparative investigation has been developed for the stability constants of several amino acid complexes with divalent metal ions, which have been determined by potentiometric pH titration. Depending on the metal ion-binding properties, vital differences in the building complexes were observed. The present study indicates that in some M(L) complexes, metal ions are arranged in carboxyl groups, but in other M(L)complexes, some metal ions are able to build chelate over amine groups. The results mentioned-above demonstrate that for some M(L) complexes, the stability constants are also largely determined by the affinity of metal ions for amine group. This leads to a kind of selectivity of... 

    Charge-transfer complexes of 4-nitrocatechol with some amino alcohols

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 75, Issue 3 , 2010 , Pages 970-977 ; 13861425 (ISSN) Baniyaghoob, S ; Najafpour, M. M ; Boghaei, D. M ; Sharif University of Technology
    2010
    Abstract
    Charge-transfer (CT) complexes formed from the reactions of 4-nitropyrocatechol (4-nCat) as an electron acceptor with four amino alcohols: 2-aminoethanol, 1-amino-2-propanol, 4-aminobutanol and N-(2-hydroxyethyl)-1,3-diaminopropane (NHEDAP) as electron donors, have been studied spectrophotometrically in H2O and H2O/EtOH at 20, 25, 30, 35 and 40 °C. The calculated values of the oscillator strength and transition moment confirm the formation of CT-complexes. The thermodynamic and spectroscopic parameters were also evaluated for the formation of CT-complexes. The equilibrium constants ranged from 9.00 to 2.20 l mol-1 (M-1). These interactions are exothermic and have relatively large standard... 

    The modification of cast AL-Mg2Si in situ mmc by lithium

    , Article Shape Casting: 3rd International Symposium 2009 - Held During TMS 2009 Annual Meeting and Exhibition, San Francisco, CA, 15 February 2009 through 19 February 2009 ; 2009 , Pages 165-172 ; 9780873397346 (ISBN) Hadian, R ; Emamy, M ; Campbell, J ; Aluminum Committee of the Light Metals Division, LMD; Aluminum Committee of the Light Metals Division, LMD; Minerals, Metals , Materials Society, TMS ; Sharif University of Technology
    2009
    Abstract
    The effects of both Lithium modification and cooling rate on the microstructure and tensile properties of an in-situ prepared Al-15% Mg 2Si composite were investigated. Adding 0.3%Li reduced the average size of Mg2Si primary particles from ∼30 μm to ∼6 μm. The effect of cooling rate was investigated by the use of a mold with different section thickness from 3 to 9 mm. The results show a refinement of primary particle size as a result of both Li additions and increased cooling rate, and their effects were additive. Similarly, both effects increased UTS and elongation values. The refinement by Li and enhanced cooling rate is discussed in terms of an analogy with the effect of Sr and cooling... 

    The modification of cast AL-Mg2Si in SITU MMC by lithium

    , Article TMS 2009 Annual Meeting and Exhibition, San Francisco, CA, 16 February 2009 through 19 February 2009 ; 2009 , Pages 165-172 ; 9780873397353 (ISBN) Hadian, R ; Emamy, M ; Campbell, J ; Sharif University of Technology
    2009
    Abstract
    Abstract The effects of both Lithium modification and cooling rate on the microstructure and tensile properties of an in-situ prepared Al-15% Mg2Si composite were investigated. Adding 0.3%Li reduced the average size of Mg2Si primary particles from ~30 μm to ~ 6 μm. The effect of cooling rate was investigated by the use of a mold with different section thickness from 3 to 9 mm. The results show a refinement of primary particle size as a result of both Li additions and increased cooling rate, and their effects were additive. Similarly, both effects increased UTS and elongation values. The refinement by Li and enhanced cooling rate is discussed in terms of an analogy with the effect of Sr and...