Loading...
Search for: analytic-solutions
0.013 seconds
Total 185 records

    Mixed Convection of Nanofluids in Channels Partially Filled with a Porous Medium

    , Ph.D. Dissertation Sharif University of Technology Hajipour Shirazifard, Mastaneh (Author) ; Molaei Dehkordi, Asghar (Supervisor)
    Abstract
    In the present study, mixed-convective heat transfer of nanofluids in a vertical rectangular channel partially filled with open-cell metal foam has been investigated experimentally and numerically. Al2O3–H2O nanofluids with different concentrations were synthesized and their stability was inspected with UV-Vis spectroscopy. The outlet temperature and pressure drop were measured for different nanofluid flow rates (i.e., Reynolds number values). In the numerical section, a two-dimensional volume-averaged form of the governing equations was used. The velocity and temperature profiles were obtained using finite difference method. The Brinkman–Forchheimer extended Darcy model and the... 

    Obtaining a Semi-analytical Solution for Contaminant Transport in Coastal Aquifers: Fourier-galerkin Method

    , M.Sc. Thesis Sharif University of Technology Koohbor, Behshad (Author) ; Ataie-Ashtiani, Behzad (Supervisor) ; Jamali, Mirmosaddegh (Co-Advisor)
    Abstract
    Existing closed form solutions of contaminant transport problems are limited by the mathematically convenient assumption of uniform flow. These solutions cannot be applied for coastal aquifers where seawater intrusion induces a variable velocity field. The Fourier series method is adapted to obtain a semi-analytical solution for contaminant transport in confined coastal aquifer in which the saltwater wedge is in equilibrium with a freshwater discharge flow. The developed method can be applied for different scenarios of contamination. Two scenarios dealing with, respectively, contaminant leakage from a source at the aquifer top surface and aquifer contamination from the landward boundary are... 

    Analytical Solution of Two Layered Flow in Transition to Approach Controlled Flow

    , M.Sc. Thesis Sharif University of Technology Ghazi Nezami, Arefeh (Author) ; Jamali, Mirmosadegh (Supervisor)
    Abstract
    In nature, tidal currents are visible in gorges and in saltwater and freshwater collisions. In the study of behavior of different types of flow, it is usually assumed that the pressure is hydrostatic and the equations are solved based on this assumption. In the Approach Controlled regime observed during the double layer in 1993, the modeling performed using the equations derived from this assumption did not fit the results of the experiments. This demonstrates the inability of the hydrostatic pressure assumption to solve this particular regime. Hence, the equations were written on the basis of non-hydrostatic pressure and then the observed results were in accordance with the results of the... 

    Analytical and Numerical Solution and a Multi-Objective Optimization for Auxetic Stents with Various Geometries

    , M.Sc. Thesis Sharif University of Technology Behinfar, Parsa (Author) ; Nourani, Amir (Supervisor)
    Abstract
    The present study examines the mechanical properties of auxetic stents with various types of structures. Geometries was parametrically modeled and the design of experiments (DOE) was developed by defining the elastic properties of the stents and using the response surface method (RSM). Finite element (FE) analysis was performed in order to find a polynomial relationship between the geometric parameters as inputs and the elastic parameters as the outputs. Then, the optimal stent was obtained in terms of elasticity parameters by using RSM and NSGA-II methods and the two-dimensional Pareto front was plotted. For instance, the optimal parameters of the Re-entrant stent including flexural... 

    A Numerical-Analytical Solution for Determining the In-situ Horizontal Stress according to the CPT Measurements

    , Ph.D. Dissertation Sharif University of Technology Golestani Dariani, Ali Akbar (Author) ; Ahmadi, Mohammad Mehdi (Supervisor)
    Abstract
    Separation of the effects of the initial horizontal stress and relative density on the cone tip resistance in the sandy soils has been a complicated issue for many years. On the other hand, there is no reliable method for determining the in-situ horizontal effective stress based on the piezocone measurements in the cohesive soils, and the empirical correlations suggested in the literature produce no more than a rough estimation.Considering the aforesaid issues, an attempt is made in this thesis to provide a new innovative solution for determining the in-situ horizontal (effective) stress in the sandy and clayey soils according to the CPT measurements. In this regard, at first, numerical... 

    An Analytical Study of The Pem Fuel Cell

    , M.Sc. Thesis Sharif University of Technology Raissi, Porya (Author) ; Nouri Borujerdi, Ali (Supervisor)
    Abstract
    In this thesis, the quasi-two-dimensional modeling of polymer electrolyte membrane fuel cell cathode side is presented as a single phase. Polymer membrane fuel cell modeling equations are solved in the equations of continuity, momentum, and chemical species are potential equation. In this report, for modeling the electrochemical reaction in the catalyst layer of the relationship Baltr-Vollmer is used. The present analytical solution based on two fixed pressure gradient and the velocity dependent pressure gradient is developed. Momentum and continuity equations in the model with separation, velocity and pressure field is achieved. By comparing the results of the modeling analysis with... 

    Analytical Solution to Bending of Shape Memory Polymer Beams

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Hadi (Author) ; Naghdabadi, Reza (Supervisor) ; Baghani, Mostafa (Co-Advisor)
    Abstract
    Shape Memory Polymers (SMPs) are a class of smart materials capable of remembering multiple shapes, and transitioning between them in response to an external stimulus such as thermal or magnetic induction. SMPs have attracted significant attention of both industrial and academic researchers due to their useful and attractive functionality. This thesis aims to analytically develop Euler-Bernoulli, Timoshenko and von Karman theories for beam bending in small strain regime considering SMP constitutive equations. To properly introduce analytical solution for the problem of beam bending, the constitutive model proposed by Baghani et al. (2012) has been used. For this purpose, three dimensional... 

    Development of a Suitable Computational Conjugate Heat Transfer Algorithm to Analyze Turbine Blade Internal Cooling

    , M.Sc. Thesis Sharif University of Technology Sajadi, Ali (Author) ; Darbandi, Masoud (Supervisor)
    Abstract
    Nowadays, the study of flow and heat transfer in turbine engines has become critical due to their increasing use and importance in various engineering industries. The critical issue of blade burning in the first row of turbine’s blades illuminates the critical roles of numerical and experimental activities in reducing these undesirable effects. Since blade cooling is directly related to the secondary air system, one important issue in blade burning research is to utilize the conjugate heat transfer approach. As Known, an increase of about 1% in the mass flow of air entering into the secondary air system would cause an increase of about 0.5% in the engine specific fuel consumption (SFC),... 

    Development of a Meta-heuristic Algorithm based on Chemotherapy Science

    , Ph.D. Dissertation Sharif University of Technology Salmani, Mohammad Hassan (Author) ; Eshghi, Kourosh (Supervisor)
    Abstract
    Among scientific fields of study, mathematical programming has high status and its importance has led researchers to develop accurate models and effective solving approaches to addressing optimization problems. In particular, meta-heuristic algorithms are approximate methods for solving optimization problems whereby good (not necessarily optimum) solutions can be generated via their implementation. In this study, we propose a population-based meta-heuristic algorithm according to chemotherapy method to cure cancers that mainly search the infeasible region. As in chemotherapy, Chemotherapy Science Algorithm (CSA) tries to kill inappropriate solutions (cancers and bad cells of the human body);... 

    Developing Three Dimensional Model for Delineation of Capture Zone of Multi Wells in Complicated Condition (Skin Effect, Partially Penetrating)

    , M.Sc. Thesis Sharif University of Technology Rashidian dezfouli, Hassan (Author) ; Ataei Ashtiani, Behzad (Supervisor)
    Abstract
    Pump and treat is one of the oldest and mostly used methods in remediation of groundwater. Although this method has been criticized recently, it is still widely be used. The systems typically use one or more extraction and injection wells to hydraulically control the contamination plume. The purpose of studying a pump and treat system is to determine the appropriate location and discharge for the wells in the way that the contamination could be pumped out. In this study after reviewing some existing solutions for delineation the capture zone of single well a method to delineate the capture zone for arbitrary located wells is presented. This method can delineate a three dimensional capture... 

    Analysis and Design of Optical Devices by Colloidal Nano-Structures

    , M.Sc. Thesis Sharif University of Technology Nekuee, Amir Hossein (Author) ; Akbari, Mahmood (Supervisor)
    Abstract
    The colloidal crystals are formed of spherical particles and can be fabricated using simple and low-cost chemical methods. Optical properties of colloidal crystals should be recognized properly in order to design optical devices based on these nano-structures. Reflection and transmission coefficients of these multilayer structures are very important for understanding their properties. Semi-analytical methods like Fourier Modal method (FMM) can be very useful to obtain their reflection and transmission properties of these multilayer structures. In this thesis, we try to implement Matched Coordinate (MC) and Adaptive Spatial Resolution (ASR) techniques in the FMM. These techniques increase... 

    Effect of Sea Level Rise and Aquifer Characteristics on Seawater Intrusion in Coastal Aquifers

    , M.Sc. Thesis Sharif University of Technology Mahmoudzadeh, Davood (Author) ; Ataie Ashtiani, Behzad (Supervisor)
    Abstract
    Approximately, 60 percent of the world's populations are living at the distance of 60 kilometers of the coasts. In coastal zones, coastal aquifers are the most important resources of the available freshwater while expected that the short-term or long-term impacts of the climate changes threat such aquifers. In general, it is predicted that climate changes e.g. sea-level rise (SLR) cause to increase seawater intrusion (SWI) in the coastal aquifers. In this study, both continental and island coastal aquifers are considered. The objective of this research is the investigation of SWI behavior occurred in the coastal aquifers due to climatic change parameters and aquifer properties. For... 

    Buckling and Free Vibration Analysis of Joined Conical Shells Using Analytical Methods

    , Ph.D. Dissertation Sharif University of Technology Shakouri, Meisam (Author) ; Kouchakzadeh, Mohammad Ali (Supervisor)
    Abstract
    In the present study, buckling and free vibration of two joined conical shells made from isotropic and generally laminated composites are presented. The joined conical shells can be considered as the general case that can be used in analysis of single cylindrical and conical shells, joined cylindrical-conical shells, joined cylinder-plates or cone-plates, cylindrical and conical shells with stepped thicknesses, annular plates, laminates with ply drop-off or any case that the stiffness of the laminate changes in the shell. Governing equations are obtained using thin-walled shallow shell theory of Donnell type and Hamilton’s principle. The joining of shells is exerted using various methods and... 

    Numerical Investigation on Offshore wind Turbine Feasibility and Function

    , M.Sc. Thesis Sharif University of Technology Ebrahimi, Alireza (Author) ; Abbaspour Tehrani Fard, Madjid (Supervisor)
    Abstract
    This thesis consists of three main chapters. The first chapter is about describing principles about offshore wind turbine, principal concepts. This chapter also explains about advantages and disadvantages of installing wind turbine at offshore fields, and economical aspect of this kind of wind turbine farms. In the second chapter,anumerical method is used to investigate a SeaStar tension leg platform offshore wind turbine response behavior in parked condition. This code considers nonlinearities due to changes in tension of tethers. Wave forces are calculated adopting the Airy wave theory. Furthermore, shear turbulent wind is exerted on tower, with maximum speed 30 m/s on the hub. Since surge... 

    Numerical and Analytical Investigation of Unequal Size Droplets Generation Process in Micro and Nano Channels

    , Ph.D. Dissertation Sharif University of Technology Bedram, Ahmad (Author) ; Moosavi, Ali (Supervisor) ; Kazemzadeh Hannani, Siamak (Co-Advisor)
    Abstract
    In this paper, we introduced two methods for producing unequal sized droplet from an initial one that don’t have the disadvantages of the available methods. We developed a comprehensive analytical theory for the T-junction with valve method. Also the geometry was simulated using a VOF algorithm and a comparison was performed between numerical and analytical results and very good agreement was observed. The accuracy of numerical results was confirmed by doing the grid independency and time step independency and comparing the results with two analytical benchmarks. We derived accurate analytical relations for calculating the droplet volume ratio, droplet length (L1, L2 and Lwhole) and pressure... 

    Numerical Investigation of Motion of Droplets in Micro and Nanochannels

    , M.Sc. Thesis Sharif University of Technology Bedram, Ahmad (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    In this research, droplet motion in symmetric and asymmetric junctions in micro and nano scales was investigated. Droplets motion in symmetric and asymmetric junctions have many applications in many industries such as chemical and pharmacy. In this research symmetric T-junction in micro and nano sizes was simulated numerically in 2D and 3D formes. Also asymmetric T-junction (with unequal width branches) was simulated numerically in two cases, 2D and 3D. In the asymmetric T-junction, also an analyrical theory was developed. Numerical simulation was performed by using VOF techniqe and analytical theory was developed by thin film theory. For verifying the accuracy of numerical solution, grid... 

    Three Dimensional Double Diffusive Convection in Saturated Porous Media

    , M.Sc. Thesis Sharif University of Technology Tabrizi Nejad As, Sara (Author) ; Aataiee-Ashtiani, Behzad (Supervisor)
    Abstract
    Thermal and compositional variations through porous media are the main causes of bringing changes in the density of the fluid in place and arising in density-driven flow. This phenomenon is usually called thermohaline or thermosolutal convection (TC). When the flow is driven by the concentration gradient of two different compositions the problem is called double-diffusive convection (DDC). This phenomenon can be observed in several applications as in geological carbon dioxide sequestration, geothermal systems, underground thermal energy storage, salt mining, salt domes, groundwater management, waste disposal, and seawater intrusion.Despite that TC processes are three-dimensional by nature... 

    Analytical and Numerical Investigation of Fuel Spray Characteristics in a Direct Injection Engine

    , M.Sc. Thesis Sharif University of Technology Farajimoghaddam, Farhad (Author) ; Saeedi, Mohammad Hassan (Supervisor)
    Abstract
    With the increasing number of applications in internal combustion engines, environmental impact and air pollution caused by emissions has been much attention. Natural gas is a promising fuel for limiting pollution laws in many countries. The use of fuel with a higher ratio of hydrogen gas to carbon pollution reduction motor. In this context and with regard to development policy and also due to the diversity basket NGV fuel, fuel injection, has been modeled analytically and numerically in a direct injection engine. In this study, an analytical model for spray injection fuel delivery and is dissolved. The resolution of the method of separation of variables is taken. The effect of the nozzle... 

    Experimental and Analytical Investigation of Bio-fuels Blends in the Direct Injection Engine

    , Ph.D. Dissertation Sharif University of Technology Ghahremani, Amir Reza (Author) ; Saeedi, Mohammad Hassan (Supervisor) ; Mozaffari, Ali Asghar (Co-Advisor) ; Hajinezhad, Ahmad (Co-Advisor)
    Abstract
    The growing use of fossil fuels and their impacts on the environmental pollution, mostly originating from internal combustion engines, is one of the important issues in environmentally friendly energy management. One of the key solutions to improve engine performance and reduce exhaust emissions of internal combustion engines is direct injection of bio-fuels. In this regard, in the present study some new biofuels such as Bio-Norouzak, Modified Bio-Ethanol (MBE), and Modified Bio-Diesel (MBF) have been introduced and effects of different parameters on their sprays have been investigated experimentally and analytically. The literature survey shows there is not any comprehensive study on the... 

    Study Effect of Plain Strain Offsetting Short Fiber Composites on Mechanical Properties (Young's Modulus , …)

    , M.Sc. Thesis Sharif University of Technology Esfini, Hossein (Author) ; Abedian, Ali (Supervisor)
    Abstract
    Obtaining the exact elastic response of composite systems to externally applied stresses is thought to be the most important way for predicting the mechanical behavior and tailoring the properties of composites. Over the past few decades, a variety of analytical models has been developed to investigate different stress transfer mechanisms in fiber composites. Although 2-D analytical model is still highly desired. So in present research a modified analytical model is developed for 2-D elastic stress field distribution in short fiber composites in plain strain for overlapping fibers subjected to an applied axial load . Two sets of exact displacement solutions for the matrix and fiber derived...