Loading...
Search for: animal-cell
0.008 seconds
Total 52 records

    Temporal activation of LRH-1 and RAR-γ in human pluripotent stem cells induces a functional naïve-like state

    , Article EMBO Reports ; Volume 21, Issue 10 , 2020 Taei, A ; Kiani, T ; Taghizadeh, Z ; Moradi, S ; Samadian, A ; Mollamohammadi, S ; Sharifi Zarchi, A ; Guenther, S ; Akhlaghpour, A ; Asgari Abibeiglou, B ; Najar Asl, M ; Karamzadeh, R ; Khalooghi, K ; Braun, T ; Hassani, S. N ; Baharvand, H ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Naïve pluripotency can be established in human pluripotent stem cells (hPSCs) by manipulation of transcription factors, signaling pathways, or a combination thereof. However, differences exist in the molecular and functional properties of naïve hPSCs generated by different protocols, which include varying similarities with pre-implantation human embryos, differentiation potential, and maintenance of genomic integrity. We show here that short treatment with two chemical agonists (2a) of nuclear receptors, liver receptor homologue-1 (LRH-1) and retinoic acid receptor gamma (RAR-γ), along with 2i/LIF (2a2iL) induces naïve-like pluripotency in human cells during reprogramming of fibroblasts,... 

    A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for ph-responsive wound healing acceleration

    , Article Advanced Healthcare Materials ; Volume 10, Issue 3 , 2021 ; 21922640 (ISSN) Ahmadian, Z ; Correia, A ; Hasany, M ; Figueiredo, P ; Dobakhti, F ; Eskandari, M. R ; Hosseini, S.H ; Abiri, R ; Khorshid, S ; Hirvonen, J ; Santos, H. A ; Shahbazi, M. A ; Sharif University of Technology
    Wiley-VCH Verlag  2021
    Abstract
    Generation of reactive oxygen species, delayed blood clotting, prolonged inflammation, bacterial infection, and slow cell proliferation are the main challenges of effective wound repair. Herein, a multifunctional extracellular matrix-mimicking hydrogel is fabricated through abundant hydrogen bonding among the functional groups of gelatin and tannic acid (TA) as a green chemistry approach. The hydrogel shows adjustable physicochemical properties by altering the concentration of TA and it represents high safety features both in vitro and in vivo on fibroblasts, red blood cells, and mice organs. In addition to the merit of facile encapsulation of cell proliferation-inducing hydrophilic drugs,... 

    A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for ph-responsive wound healing acceleration

    , Article Advanced Healthcare Materials ; Volume 10, Issue 3 , 2021 ; 21922640 (ISSN) Ahmadian, Z ; Correia, A ; Hasany, M ; Figueiredo, P ; Dobakhti, F ; Eskandari, M. R ; Hosseini, S. H ; Abiri, R ; Khorshid, S ; Hirvonen, J ; Santos, H. A ; Shahbazi, M. A ; Sharif University of Technology
    Wiley-VCH Verlag  2021
    Abstract
    Generation of reactive oxygen species, delayed blood clotting, prolonged inflammation, bacterial infection, and slow cell proliferation are the main challenges of effective wound repair. Herein, a multifunctional extracellular matrix-mimicking hydrogel is fabricated through abundant hydrogen bonding among the functional groups of gelatin and tannic acid (TA) as a green chemistry approach. The hydrogel shows adjustable physicochemical properties by altering the concentration of TA and it represents high safety features both in vitro and in vivo on fibroblasts, red blood cells, and mice organs. In addition to the merit of facile encapsulation of cell proliferation-inducing hydrophilic drugs,... 

    Supramolecular polycaprolactone nanocomposite based on functionalized hydroxyapatite

    , Article Journal of Bioactive and Compatible Polymers ; Volume 27, Issue 5 , January , 2012 , Pages 467-480 ; 08839115 (ISSN) Mehmanchi, M ; Shokrollahi, P ; Atai, M ; Omidian, H ; Bagheri, R ; Sharif University of Technology
    SAGE  2012
    Abstract
    Arms bearing ureido-pyrimidinone functional groups with self-association capability (through quadruple hydrogen bonds) were successfully grafted onto hydroxyapatite nanoparticles. The supramolecularly modified nanoparticles (nHApUPy) exhibited enhanced colloidal stability compared to the original hydroxyapatite nanoparticles and were uniformly dispersed in supramolecular polycaprolactone in PCL(UPy)2/HApUPy nanocomposites at different filler loadings. The combined atomic force microscopy, mechanical, and rheological analyses confirmed a high degree of compatibility of HApUPy nanoparticles with the polymer matrix. The temperature dependence of the supramolecular structure in PCL(UPy)2/HApUPy... 

    Directional migration and differentiation of neural stem cells within three-dimensional microenvironments

    , Article Integrative Biology (United Kingdom) ; Volume 7, Issue 3 , Jan , 2015 , Pages 335-344 ; 17579694 (ISSN) Shamloo, A ; Heibatollahi, M ; Mofrad, M. R. K ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Harnessing neural stem cells to repair neuronal damage is a promising potential treatment for neuronal diseases. To enable future therapeutic efficacy, the survival, proliferation, migration and differentiation of neural stem/progenitor cells (NPCs) should be accurately studied and optimized in in vitro platforms before transplanting these cells into the body for treatment purposes. Such studies can determine the appropriate quantities of the biochemical and biomechanical factors needed to control and optimize NPC behavior in vivo. In this study, NPCs were cultured within a microfluidic device while being encapsulated within the collagen matrix. The migration and differentiation of NPCs were... 

    Electrospinning of nanodiamond-modified polysaccharide nanofibers with physico-mechanical properties close to natural skins

    , Article Marine Drugs ; Volume 14, Issue 7 , 2016 ; 16603397 (ISSN) Mahdavi, M ; Mahmoudi, N ; Rezaie Anaran, F ; Simchi, A ; Sharif University of Technology
    MDPI AG 
    Abstract
    Electrospinning of biopolymers has gained significant interest for the fabrication of fibrous mats for potential applications in tissue engineering, particularly for wound dressing and skin regeneration. In this study, for the first time, we report successful electrospinning of chitosan-based biopolymers containing bacterial cellulous (33 wt %) and medical grade nanodiamonds (MND) (3 nm; up to 3 wt %). Morphological studies by scanning electron microscopy showed that long and uniform fibers with controllable diameters from 80 to 170 nm were prepared. Introducing diamond nanoparticles facilitated the electrospinning process with a decrease in the size of fibers. Fourier transform infrared... 

    Expression and function of c1orf132 long-noncoding rna in breast cancer cell lines and tissues

    , Article International Journal of Molecular Sciences ; Volume 22, Issue 13 , 2021 ; 16616596 (ISSN) Shafaroudi, A. M ; Sharifi Zarchi, A ; Rahmani, S ; Nafissi, N ; Mowla, S. J ; Lauria, A ; Oliviero, S ; Matin, M. M ; Sharif University of Technology
    MDPI  2021
    Abstract
    miR-29b2 and miR-29c play a suppressive role in breast cancer progression. C1orf132 (also named MIR29B2CHG) is the host gene for generating both microRNAs. However, the region also expresses longer transcripts with unknown functions. We employed bioinformatics and experimental approaches to decipher C1orf132 expression and function in breast cancer tissues. We also used the CRISPR/Cas9 technique to excise a predicted C1orf132 distal promoter and followed the behavior of the edited cells by real-time PCR, flow cytometry, migration assay, and RNA-seq techniques. We observed that C1orf132 long transcript is significantly downregulated in triple-negative breast cancer. We also identified a... 

    Combined effects of electric stimulation and microgrooves in cardiac tissue-on-a-chip for drug screening

    , Article Small Methods ; Volume 4, Issue 10 , 2020 Ren, L ; Zhou, X ; Nasiri, R ; Fang, J ; Jiang, X ; Wang, C ; Qu, M ; Ling, H ; Chen, Y ; Xue, Y ; Hartel, M.C ; Tebon, P ; Zhang, S ; Kim, H.-J ; Yuan, X ; Shamloo, A ; Dokmeci, M. R ; Li, S ; Khademhosseini, A ; Ahadian, S ; Sun, W ; Sharif University of Technology
    John Wiley and Sons Inc  2020
    Abstract
    Animal models and traditional cell cultures are essential tools for drug development. However, these platforms can show striking discrepancies in efficacy and side effects when compared to human trials. These differences can lengthen the drug development process and even lead to drug withdrawal from the market. The establishment of preclinical drug screening platforms that have higher relevancy to physiological conditions is desirable to facilitate drug development. Here, a heart-on-a-chip platform, incorporating microgrooves and electrical pulse stimulations to recapitulate the well-aligned structure and synchronous beating of cardiomyocytes (CMs) for drug screening, is reported. Each chip... 

    The controlled release of dexamethasone sodium phosphate from bioactive electrospun PCL/gelatin nanofiber scaffold

    , Article Iranian Journal of Pharmaceutical Research ; Volume 18, Issue 1 , 2019 , Pages 111-124 ; 17350328 (ISSN) Boroojeni, F. R ; Mashayekhan, S ; Abbaszadeh, H. A ; Sharif University of Technology
    Iranian Journal of Pharmaceutical Research  2019
    Abstract
    In this study, a system of dexamethasone sodium phosphate (DEXP)-loaded chitosan nanoparticles embedded in poly-ε-caprolacton (PCL) and gelatin electrospun nanofiber scaffold was introduced with potential therapeutic application for treatment of the nervous system. Besides anti-inflammatory properties, DEXP act through its glucocorticoid receptors, which are involved in the inhibition of astrocyte proliferation and microglial activation. Bovine serum albumin (BSA) was used to improve the encapsulation efficiency of DEXP within chitosan nanoparticles and to overcome its initial burst release. BSA incorporation within the chitosan nanoparticles increased the encapsulation efficiency of DEXP... 

    The different fate of satellite cells on conductive composite electrospun nanofibers with graphene and graphene oxide nanosheets

    , Article Biomedical Materials (Bristol) ; Volume 11, Issue 2 , 2016 ; 17486041 (ISSN) Mahmoudifard, M ; Soleimani, M ; Hatamie, S ; Zamanlui, S ; Ranjbarvan, P ; Vossoughi, M ; Hosseinzadeh, S ; Sharif University of Technology
    Institute of Physics Publishing  2016
    Abstract
    Electrospinning of composite polymer solutions provides fantastic potential to prepare novel nanofibers for use in a variety of applications. The addition of graphene (G) and graphene oxide (GO) nanosheets to bioactive polymers was found to enhance their conductivity and biocompatibility. Composite conductive nanofibers of polyaniline (PANI) and polyacrylonitrile (PAN) with G and GO nanosheets were prepared by an electrospinning process. The fabricated membranes were investigated by physical and chemical examinations including scanning electron microscopy (SEM), Raman spectroscopy, x-ray diffraction (XRD) and tensile assay. The muscle satellite cells enriched by a pre-plating technique were... 

    A microfabricated platform for the study of chondrogenesis under different compressive loads

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 78 , 2018 , Pages 404-413 ; 17516161 (ISSN) Kowsari Esfahan, R ; Jahanbakhsh, A ; Saidi, M. S ; Bonakdar, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Microfluidic devices are beneficial in miniaturizing and multiplexing various cellular assays in a single platform. Chondrogenesis is known to pertain to chemical, topographical, and mechanical cues in the microenvironment. Mechanical cues themselves have numerous parameters such as strain magnitude, frequency, and stimulation time. Effects of different strain magnitudes on the chondrogenic differentiation of adult stem cells have not been explored thoroughly. Here, a new multilayer microdevice is presented for the unidirectional compressive stimulation of cells in a three-dimensional cell culture. Numerical simulations were performed to evaluate and optimize the design. Results showed a... 

    Fabrication and evaluation of a bilayer hydrogel-electrospinning scaffold prepared by the freeze-gelation method

    , Article Journal of Biomechanics ; Volume 98 , 2020 Kamali, A ; Shamloo, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This study presents a bilayer structure as a skin scaffold comprised of an electrospun sheet layer made of polycaprolactone and polyvinil alcohol and a porous hydrogel layer made of chitosan and gelatin. The hydrogel layer was fabricated by employing the freeze-gelation technique. The bilayer structure was achieved by pouring the hydrogel solution on the electrospun sheet at the bottom of a mold followed by the freeze-gelation technique to obtain a porous structure in the hydrogel. The hydrogel and hydrogel-electrospun samples were characterized by scanning electron microscopy, swelling, tensile strength, in vitro and in vivo analyses. From a mechanical strength standpoint, the combination... 

    Mixed oxide nanotubes in nanomedicine: A dead-end or a bridge to the future?

    , Article Ceramics International ; 2020 Sarraf, M ; Nasiri Tabrizi, B ; Yeong, C. H ; Madaah Hosseini, H. R ; Saber Samandari, S ; Basirun, W. J ; Tsuzuki, T ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Nanomedicine has seen a significant rise in the development of new research tools and clinically functional devices. In this regard, significant advances and new commercial applications are expected in the pharmaceutical and orthopedic industries. For advanced orthopedic implant technologies, appropriate nanoscale surface modifications are highly effective strategies and are widely studied in the literature for improving implant performance. It is well-established that implants with nanotubular surfaces show a drastic improvement in new bone creation and gene expression compared to implants without nanotopography. Nevertheless, the scientific and clinical understanding of mixed oxide... 

    Core-sheath gelatin based electrospun nanofibers for dual delivery release of biomolecules and therapeutics

    , Article Materials Science and Engineering C ; Volume 108 , 2020 Zandi, N ; Lotfi, R ; Tamjid, E ; Shokrgozar, M. A ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Coaxial electrospinning with the ability to use simultaneously two separate solvents provides a promising strategy for drug delivery. Nevertheless, controlled release of hydrophilic and sensitive therapeutics from slow biodegradable polymers is still challenging. To address this gap, we fabricated core-sheath fibers for dual delivery of lysozyme, as a model protein, and phenytoin sodium as a small therapeutic molecule. The sheath was processed by a gelatin solution while the core fibers were fabricated from an aqueous gelatin/PVA solution. Microstructural studies by transmission and scanning electron microscopy reveal the formation of homogeneous core-sheath nanofibers with an outer and... 

    Seasonal variations in the oxidative stress and inflammatory potential of PM2.5 in Tehran using an alveolar macrophage model; The role of chemical composition and sources

    , Article Environment International ; Volume 123 , 2019 , Pages 417-427 ; 01604120 (ISSN) Al Hanai, A. H ; Antkiewicz, D. S ; Hemming, J. D. C ; Shafer, M. M ; Lai, A. M ; Arhami, M ; Hosseini, V ; Schauer, J. J ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The current study was designed to assess the association between temporal variations in urban PM2.5 chemical composition, sources, and the oxidative stress and inflammatory response in an alveolar macrophage (AM) model. A year-long sampling campaign collected PM2.5 samples at the Sharif University in Tehran, Iran. PM-induced reactive oxygen species (ROS) production was measured both with an acellular dithiothreitol consumption assay (DTT-ROS; ranged from 2.1 to 9.3 nmoles min−1 m−3) and an in vitro macrophage-mediated ROS production assay (AM-ROS; ranged from 125 to 1213 μg Zymosan equivalents m−3). The production of tumor necrosis factor alpha (TNF-α; ranged from ~60 to 518 pg TNF-α m−3)... 

    Mixed oxide nanotubes in nanomedicine: A dead-end or a bridge to the future?

    , Article Ceramics International ; Volume 47, Issue 3 , 2021 , Pages 2917-2948 ; 02728842 (ISSN) Sarraf, M ; Nasiri Tabrizi, B ; Yeong, C. H ; Madaah Hosseini, H. R ; Saber-Samandari, S ; Basirun, W. J ; Tsuzuki, T ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Nanomedicine has seen a significant rise in the development of new research tools and clinically functional devices. In this regard, significant advances and new commercial applications are expected in the pharmaceutical and orthopedic industries. For advanced orthopedic implant technologies, appropriate nanoscale surface modifications are highly effective strategies and are widely studied in the literature for improving implant performance. It is well-established that implants with nanotubular surfaces show a drastic improvement in new bone creation and gene expression compared to implants without nanotopography. Nevertheless, the scientific and clinical understanding of mixed oxide... 

    Producing functional recombinant human keratinocyte growth factor in Pichia pastoris and investigating its protective role against irradiation

    , Article Enzyme and Microbial Technology ; Volume 111 , April , 2018 , Pages 12-20 ; 01410229 (ISSN) Bahadori, Z ; Kalhor, H. R ; Mowla, S. J ; Sharif University of Technology
    Elsevier Inc  2018
    Abstract
    Keratinocyte Growth Factor (KGF) is a paracrine-acting, epithelial mitogen that plays a prominent role in the regeneration of damaged epithelial tissues. In spite of different attempts to produce recombinant human KGF in many organisms, including bacteria, mammalian cells, plant cells and insect cells; production of recombinant form suffers from lower yields and recovery relative to other recombinant proteins of similar size and properties. Due to many advantages of Pichia pastoris expression systems for producing industrial enzymes and pharmaceutical proteins, in this study P. pastoris was chosen as a host for KGF expression. For preparing human KGF coding sequence, MCF-7 cell line was... 

    Modification of bacterial cellulose/keratin nanofibrous mats by a tragacanth gum-conjugated hydrogel for wound healing

    , Article International Journal of Biological Macromolecules ; Volume 134 , 2019 , Pages 280-289 ; 01418130 (ISSN) Azarniya, A ; Tamjid, E ; Eslahi, N ; Simchi, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    To enhance physicomechanical properties and bioactivity of fibrous membranes for wound dressing and tissue engineering applications, novel composite scaffolds consisting of fibrous mats and thermosensitive hydrogel particles were prepared by concurrent electrospinning and electrospraying technique. The composite scaffolds were composed of keratin/bacterial cellulose fibers (150 ± 43 nm) which are hybridized with hydrogel particles (500 nm to 2 μm) based on nonionic triblock copolymers conjugated with Tragacanth gum (TG). FTIR and H-NMR studies indicated ester reactions between carboxylated copolymers and TG through carbodiimide crosslinker chemistry. The hydrogel particles were uniformly... 

    A comparative study of wound dressings loaded with silver sulfadiazine and silver nanoparticles: In vitro and in vivo evaluation

    , Article International Journal of Pharmaceutics ; Volume 564 , 2019 , Pages 350-358 ; 03785173 (ISSN) Mohseni, M ; Shamloo, A ; Aghababaie, Z ; Afjoul, H ; Abdi, S ; Moravvej, H ; Vossoughi, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In the current study, two series of antimicrobial dressings conjugated with silver sulfadiazine (SSD) and silver nanoparticles (AgNPs) were developed and evaluated for chronic wound healing. Highly porous polycaprolactone (PCL)/polyvinyl alcohol (PVA) nanofibers were loaded with different concentrations of SSD or AgNPs and compared comprehensively in vitro and in vivo. SSD and AgNPs indicated a strong and equal antimicrobial activity against S. aureus. However, SSD had more toxicity against fibroblast cells over one week in vitro culture. An in vivo model of wound healing on male Wistar rats was developed with a full thickness wound. All the wound dressings indicated enough flexibility and... 

    Fabrication, modeling and optimization of lyophilized advanced platelet rich fibrin in combination with collagen-chitosan as a guided bone regeneration membrane

    , Article International Journal of Biological Macromolecules ; Volume 125 , 2019 , Pages 383-391 ; 01418130 (ISSN) Ansarizadeh, M ; Mashayekhan, S ; Saadatmand, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, lyophilized advanced platelet rich fibrin (A-PRF) was used in combination with collagen-chitosan membrane for the first time to combine advantages of both collagen and A-PRF membranes. Response surface methodology (RSM) was used to design the experimental condition and to correlate the effects of parameters, including chitosan/collagen (chit/col) weight ratio and A-PRF concentration on Young's modulus, mesenchymal stem cell (MSCs) viability and degradation rate of the membranes. Results showed that Young's modulus of the membranes was intensified by increasing chit/col weight ratio and decreasing A-PRF concentration from 3 to 8 MPa. Cell viability of MSCs was improved by both...