Loading...
Search for:
animal-tissue
0.006 seconds
Total 46 records
Evaluation of the effects of fullerene c60 nanoparticles on oxidative stress parameters in normal rats liver and brain
, Article Journal of Advances in Medical and Biomedical Research ; Volume 27, Issue 124 , 2019 , Pages 8-15 ; 26766264 (ISSN) ; Bahrami, F ; Bahri, Z ; Ghanbari, B ; Elahi, S. A ; Mohammadi, M. T ; Sharif University of Technology
Zanjan University of Medical Sciences and Health Services
2019
Abstract
Background & Objective: The potent antioxidant property of fullerene C60 nanoparticles and their derivatives has been demonstrated in a wide range of in vitro and in vivo studies. Hence, we examined the effects of fullerene C60 on the oxidative stress parameters in brain and liver of the rats in normal situation. Materials & Methods: The study was performed in two groups of Wistar rats (each group, n = 6); normal and fullerene-treated normal animals. Treated rats received fullerene via oral gavage at dose of 1 mg/kg/day for 60 days. At termination of the study, the oxidative stress parameters were determined in brain and liver tissues, including the contents of glutathione (GSH) and...
Comparison of strengths of five internal fixation methods used after bilateral sagittal split ramus osteotomy: An in vitro study
, Article Dental Research Journal ; Volume 17, Issue 4 , 2020 , Pages 258-265 ; Ahmady, A ; Farahmand, F ; Fateh, A ; Kahali, R ; Nourani, A ; Rakhshan, V ; Sharif University of Technology
Wolters Kluwer Medknow Publications
2020
Abstract
Results on the strength and displacement of internal fixation methods for bilateral sagittal split ramus osteotomy are controversial, and some designs have not been adequately studied. Therefore, this study was conducted to compare techniques using bicortical or monocortical screws. Materials and Methods: In this in vitro study, 35 sheep hemi-mandibles were randomly assigned to five groups of seven each: fixation using (1) a 13 × 2 screw, (2) two 13 × 2 screws (arranged vertically), (3) three 13 × 2 screws, (4) 1 plate with 4 holes and four monocortical screws, and (5) a Y-shaped plate and five monocortical screws. Specimens underwent vertical forces until failure. Breakage forces and...
Temporal activation of LRH-1 and RAR-γ in human pluripotent stem cells induces a functional naïve-like state
, Article EMBO Reports ; Volume 21, Issue 10 , 2020 ; Kiani, T ; Taghizadeh, Z ; Moradi, S ; Samadian, A ; Mollamohammadi, S ; Sharifi Zarchi, A ; Guenther, S ; Akhlaghpour, A ; Asgari Abibeiglou, B ; Najar Asl, M ; Karamzadeh, R ; Khalooghi, K ; Braun, T ; Hassani, S. N ; Baharvand, H ; Sharif University of Technology
Wiley-VCH Verlag
2020
Abstract
Naïve pluripotency can be established in human pluripotent stem cells (hPSCs) by manipulation of transcription factors, signaling pathways, or a combination thereof. However, differences exist in the molecular and functional properties of naïve hPSCs generated by different protocols, which include varying similarities with pre-implantation human embryos, differentiation potential, and maintenance of genomic integrity. We show here that short treatment with two chemical agonists (2a) of nuclear receptors, liver receptor homologue-1 (LRH-1) and retinoic acid receptor gamma (RAR-γ), along with 2i/LIF (2a2iL) induces naïve-like pluripotency in human cells during reprogramming of fibroblasts,...
A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for ph-responsive wound healing acceleration
, Article Advanced Healthcare Materials ; Volume 10, Issue 3 , 2021 ; 21922640 (ISSN) ; Correia, A ; Hasany, M ; Figueiredo, P ; Dobakhti, F ; Eskandari, M. R ; Hosseini, S.H ; Abiri, R ; Khorshid, S ; Hirvonen, J ; Santos, H. A ; Shahbazi, M. A ; Sharif University of Technology
Wiley-VCH Verlag
2021
Abstract
Generation of reactive oxygen species, delayed blood clotting, prolonged inflammation, bacterial infection, and slow cell proliferation are the main challenges of effective wound repair. Herein, a multifunctional extracellular matrix-mimicking hydrogel is fabricated through abundant hydrogen bonding among the functional groups of gelatin and tannic acid (TA) as a green chemistry approach. The hydrogel shows adjustable physicochemical properties by altering the concentration of TA and it represents high safety features both in vitro and in vivo on fibroblasts, red blood cells, and mice organs. In addition to the merit of facile encapsulation of cell proliferation-inducing hydrophilic drugs,...
A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for ph-responsive wound healing acceleration
, Article Advanced Healthcare Materials ; Volume 10, Issue 3 , 2021 ; 21922640 (ISSN) ; Correia, A ; Hasany, M ; Figueiredo, P ; Dobakhti, F ; Eskandari, M. R ; Hosseini, S. H ; Abiri, R ; Khorshid, S ; Hirvonen, J ; Santos, H. A ; Shahbazi, M. A ; Sharif University of Technology
Wiley-VCH Verlag
2021
Abstract
Generation of reactive oxygen species, delayed blood clotting, prolonged inflammation, bacterial infection, and slow cell proliferation are the main challenges of effective wound repair. Herein, a multifunctional extracellular matrix-mimicking hydrogel is fabricated through abundant hydrogen bonding among the functional groups of gelatin and tannic acid (TA) as a green chemistry approach. The hydrogel shows adjustable physicochemical properties by altering the concentration of TA and it represents high safety features both in vitro and in vivo on fibroblasts, red blood cells, and mice organs. In addition to the merit of facile encapsulation of cell proliferation-inducing hydrophilic drugs,...
Combinational therapy of lithium and human neural stem cells in rat spinal cord contusion model
, Article Journal of Cellular Physiology ; Volume 234, Issue 11 , 2019 , Pages 20742-20754 ; 00219541 (ISSN) ; Sadrosadat, H ; Jaberi, R ; Zareikheirabadi, M ; Mirsadeghi, S ; Naghdabadi, Z ; Ghaneezabadi, M ; Fardmanesh, M ; Baharvand, H ; Kiani, S ; Sharif University of Technology
Wiley-Liss Inc
2019
Abstract
A large number of treatment approaches have been used for spinal cord injury improvement, a medically incurable disorder, and subsequently stem cell transplantation appears to be a promising strategy. The main objective of this study is to ascertain whether combinational therapy of human neural stem cells (hNSCs) together with lithium chloride improves cell survival, proliferation, and differentiation in a rat spinal contusion model, or not. Contusive spinal cord injury was implemented on Wistar male rats. Experimental groups comprised of: control, hNSCs transplanted, lithium chloride (Li), and hNSCs and lithium chloride (hNSCs + Li). In every experimental group, locomotor activity score and...
SAR thresholds for electromagnetic exposure using functional thermal dose limits
, Article International Journal of Hyperthermia ; Volume 34, Issue 8 , 2018 , Pages 1248-1254 ; 02656736 (ISSN) ; Paulides, M. M ; Van Rhoon, G. C ; Sharif University of Technology
Taylor and Francis Ltd
2018
Abstract
Background and purpose: To protect against any potential adverse effects to human health from localised exposure to radio frequency (100 kHz–3 GHz) electromagnetic fields (RF EMF), international health organisations have defined basic restrictions on specific absorption rate (SAR) in tissues. These exposure restrictions incorporate safety factors which are generally conservative so that exposures that exceed the basic restrictions are not necessarily harmful. The magnitude of safety margin for various exposure scenarios is unknown. This shortcoming becomes more critical for medical applications where the safety guidelines are required to be relaxed. The purpose of this study was to quantify...
Nonlinear mechanics of soft composites: hyperelastic characterization of white matter tissue components
, Article Biomechanics and Modeling in Mechanobiology ; Volume 19, Issue 3 , 2020 , Pages 1143-1153 ; Shamloo, A ; Farahmand, F ; Sharif University of Technology
Springer
2020
Abstract
This paper presents a bi-directional closed-form analytical solution, in the framework of nonlinear soft composites mechanics, for top-down hyperelastic characterization of brain white matter tissue components, based on the directional homogenized responses of the tissue in the axial and transverse directions. The white matter is considered as a transversely isotropic neo-Hookean composite made of unidirectional distribution of axonal fibers within the extracellular matrix. First, two homogenization formulations are derived for the homogenized axial and transverse shear moduli of the tissue, based on definition of the strain energy density function. Next, the rule of mixtures and...
An extended algorithm for autonomous grasping of soft tissues during robotic surgery
, Article International Journal of Medical Robotics and Computer Assisted Surgery ; Volume 16, Issue 5 , 2020 , Pages 1-15 ; Farahmand, F ; Yazdian, S. M ; Mirbagheri, A ; Sharif University of Technology
John Wiley and Sons Ltd
2020
Abstract
Background: Autonomous grasping of soft tissues can facilitate the robotic surgery procedures. The previous attempts for implementing auto-grasping have been based on a simplistic representation of the actual surgery maneuvers. Method: A generalized three-zone grasp model was introduced to consider the effect of the pull force angulation on the grasp mode, that is, damage, slip, or safe grasp. Also, an extended auto-grasping algorithm was proposed in which the trigger force is automatically controlled against the pull force magnitude and direction, to achieve a safe and secure grasp. Results: The autonomous grasping experiments against a varying pull force in a phantom study indicated a good...
Role of endurance training in preventing pathological hypertrophy via large tumor suppressor (LATS) changes
, Article Iranian Heart Journal ; Volume 20, Issue 3 , 2019 , Pages 52-59 ; 17357306 (ISSN) ; Soori, R ; Choobineh, S ; Gholipour, M ; Sharif University of Technology
Iranian Heart Association
2019
Abstract
Background: One of the negative effects of cardiac sympathetic hyperactivity is pathologic hypertrophy. Recent studies have indicated that large tumor suppressor (LATS) is one of the molecules which play a critical role in cardiomyocyte apoptosis. Considering the preventive role of exercise training, we evaluated the effects of endurance training on LATS gene expression and its upstream pathway in the present study. Methods: Eighteen male Wistar rats were randomly divided into 2 groups: Endurance and control. Endurance training was performed for 8 weeks, 1 hour per day, and 6 days per week on the treadmill at a 15° inclination. Pathologic hypertrophy was induced with the injection of 3...
A microfabricated platform for the study of chondrogenesis under different compressive loads
, Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 78 , 2018 , Pages 404-413 ; 17516161 (ISSN) ; Jahanbakhsh, A ; Saidi, M. S ; Bonakdar, S ; Sharif University of Technology
Elsevier Ltd
2018
Abstract
Microfluidic devices are beneficial in miniaturizing and multiplexing various cellular assays in a single platform. Chondrogenesis is known to pertain to chemical, topographical, and mechanical cues in the microenvironment. Mechanical cues themselves have numerous parameters such as strain magnitude, frequency, and stimulation time. Effects of different strain magnitudes on the chondrogenic differentiation of adult stem cells have not been explored thoroughly. Here, a new multilayer microdevice is presented for the unidirectional compressive stimulation of cells in a three-dimensional cell culture. Numerical simulations were performed to evaluate and optimize the design. Results showed a...
Biomechanical response of intact, degenerated and repaired intervertebral discs under impact loading – Ex-vivo and In-Silico investigation
, Article Journal of Biomechanics ; Volume 70 , March , 2018 , Pages 26-32 ; 00219290 (ISSN) ; Wang, J. L ; Parnianpour, M ; El-Rich, M ; Khalaf, K ; Sharif University of Technology
Elsevier Ltd
2018
Abstract
Understanding the effect of impact loading on the mechanical response of the intervertebral disc (IVD) is valuable for investigating injury mechanisms and devising effective therapeutic modalities. This study used 24 porcine thoracic motion segments to characterize the mechanical response of intact (N = 8), degenerated (Trypsin-denatured, N = 8), and repaired (Genepin-treated, N = 8) IVDs subject to impact loading. A meta-model analysis of poroelastic finite element simulations was used in combination with ex-vivo creep and impact tests to extract the material properties. Forward analyses using updated specimen-specific FE models were performed to evaluate the effect of impact duration. The...
Phenomenological tissue fracture modeling for an Endoscopic Sinus and Skull Base Surgery training system based on experimental data
, Article Medical Engineering and Physics ; Volume 68 , 2019 , Pages 85-93 ; 13504533 (ISSN) ; Farahmand, F ; Vossoughi, G ; Moradi, H ; Mousa Sadr Hosseini, S ; Sharif University of Technology
Elsevier Ltd
2019
Abstract
The ideal simulator for Endoscopic Sinus and Skull Base Surgery (ESSS)training must be supported by a physical model and provide repetitive behavior in a controlled environment. Development of realistic tissue models is a key part of ESSS virtual reality (VR)-based surgical simulation. Considerable research has been conducted to address haptic or force feedback and propose a phenomenological tissue fracture model for sino-nasal tissue during surgical tool indentation. Mechanical properties of specific sino-nasal regions of the sheep head have been studied in various indentation and relaxation experiments. Tool insertion at different indentation rates into coronal orbital floor (COF)tissue is...
Fabrication and evaluation of a bilayer hydrogel-electrospinning scaffold prepared by the freeze-gelation method
, Article Journal of Biomechanics ; Volume 98 , 2020 ; Shamloo, A ; Sharif University of Technology
Elsevier Ltd
2020
Abstract
This study presents a bilayer structure as a skin scaffold comprised of an electrospun sheet layer made of polycaprolactone and polyvinil alcohol and a porous hydrogel layer made of chitosan and gelatin. The hydrogel layer was fabricated by employing the freeze-gelation technique. The bilayer structure was achieved by pouring the hydrogel solution on the electrospun sheet at the bottom of a mold followed by the freeze-gelation technique to obtain a porous structure in the hydrogel. The hydrogel and hydrogel-electrospun samples were characterized by scanning electron microscopy, swelling, tensile strength, in vitro and in vivo analyses. From a mechanical strength standpoint, the combination...
3D simulation of solutes concentration in urinary concentration mechanism in rat renal medulla
, Article Mathematical Biosciences ; Volume 308 , 2019 , Pages 59-69 ; 00255564 (ISSN) ; Abdekhodaie, M. J ; Farhadi, F ; Shafiee, M. A ; Sharif University of Technology
Elsevier Inc
2019
Abstract
In this work, a mathematical model was developed to simulate the urinary concentration mechanism. A 3-D geometry was derived based on the detail physiological pictures of rat kidney. The approximate region of each tubule was obtained from the volume distribution of structures based on Walter Pfaller's monograph and Layton's region-based model. Mass and momentum balances were applied to solve for the change in solutes concentration and osmolality. The osmolality of short and long descending nephrons at the end of the outer medulla was obtained to be 530 mOsmol/kgH2O and 802 mOsmol/kgH2O, respectively, which were in acceptable agreement with experimental data. The fluid osmolality of the short...
Accelerated full-thickness wound healing via sustained bFGF delivery based on a PVA/chitosan/gelatin hydrogel incorporating PCL microspheres
, Article International Journal of Pharmaceutics ; Volume 537, Issue 1-2 , 2018 , Pages 278-289 ; 03785173 (ISSN) ; Sarmadi, M ; Aghababaie, Z ; Vossoughi, M ; Sharif University of Technology
Elsevier B.V
2018
Abstract
Herein, a hybrid hydrogel/microsphere system is introduced for accelerated wound healing by sustained release of basic fibroblast growth factor (bFGF). The hydrogel is composed of a mixture of PVA, gelatin and chitosan. The double-emulsion-solvent-evaporation method was utilized to obtain microspheres composed of PCL, as the organic phase, and PVA, as the aqueous phase. Subsequently, various in-vitro and in-vivo assays were performed to characterize the system. BSA was used to optimize the release mechanism, and encapsulation efficiency in microspheres, where a combination of 3% (w/v) PCL and 1% (w/v) PVA was found to be the optimum microsphere sample. Incorporation of microspheres within...
Allergic rhinitis impairs working memory in association with drop of hippocampal – Prefrontal coupling
, Article Brain Research ; Volume 1758 , 2021 ; 00068993 (ISSN) ; Ghazvineh, S ; Nazari, M ; Dehdar, K ; Garousi, M ; Zare, M ; Tabasi, F ; Jamaati, H ; Salimi, A ; Barkley, V ; Mirnajafi Zadeh, J ; Raoufy, M. R ; Sharif University of Technology
Elsevier B.V
2021
Abstract
Allergic rhinitis (AR) is a chronic inflammatory disease frequently associated with a deficit in learning and memory. Working memory is an important system for decision making and guidance, which depends on interactions between the ventral hippocampus (vHipp) and the prelimbic prefrontal cortex (plPFC). It is still unclear whether AR influences the activity and coupling of these brain areas, which consequently may impair working memory. The current study aimed to examine alterations of the vHipp-plPFC circuit in a rat model of AR. Our results show decreased working memory performance in AR animals, accompanied by a reduction of theta and gamma oscillations in plPFC. Also, AR reduces...
Fabrication and evaluation of chitosan/gelatin/PVA hydrogel incorporating honey for wound healing applications: An in vitro, in vivo study
, Article International Journal of Pharmaceutics ; Volume 592 , 2021 ; 03785173 (ISSN) ; Aghababaie, Z ; Afjoul, H ; Jami, M ; Bidgoli, M. R ; Vossoughi, M ; Ramazani, A ; Kamyabhesari, K ; Sharif University of Technology
Elsevier B.V
2021
Abstract
In this study, physically cross-linked hydrogels were developed by freezing-thawing method while different concentrations of honey were included into the hydrogels for accelerated wound healing. The hydrogel was composed of chitosan, polyvinyl alcohol (PVA), and gelatin with the ratio of 2:1:1 (v/v), respectively. Further, the effect of honey concentrations on antibacterial properties, and cell behavior was investigated. In vivo studies, including wound healing mechanism using rat model and histological analysis of section tissue samples were performed. The results illustrated that the incorporation of honey in hydrogels increased the ultimate strain of hydrogels approximately two times,...
Hyperthermia of breast cancer tumor using graphene oxide-cobalt ferrite magnetic nanoparticles in mice
, Article Journal of Drug Delivery Science and Technology ; Volume 65 , 2021 ; 17732247 (ISSN) ; Balasi, Z. M ; Ahadian, M. M ; Mortezazadeh, T ; Shams, F ; Hosseinzadeh, S ; Sharif University of Technology
Editions de Sante
2021
Abstract
Herein, the graphene oxide (GO)/cobalt ferrite nanoparticles were used to apply the heat treatment on the breast cancer cell line of MCF7. The synthesized nanoparticles were evaluated before in vitro and in vivo studies, using transmission electron microscopy (TEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS), thermal property and relaxivity measurement. The nanoparticles showed a diameter of 5 nm with the ferrimagnetic property. Also, the nanoparticles were well distributed on the GO nanosheets. The related peaks of cobalt ferrite nanoparticles were approved by using XRD and XPS assays. During the in vitro investigations, IC50 with...
Bioinspired nanofiber scaffold for differentiating bone marrow-derived neural stem cells to oligodendrocyte-like cells: Design, fabrication, and characterization
, Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 3903-3920 ; Mashayekhan, S ; Abbaszadeh, H. A ; Ansarizadeh, M ; Khoramgah, M. S ; Rahimi Movaghar, V ; Sharif University of Technology
Dove Medical Press Ltd
2020
Abstract
Background: Researchers are trying to study the mechanism of neural stem cells (NSCs) differentiation to oligodendrocyte-like cells (OLCs) as well as to enhance the selective differentiation of NSCs to oligodendrocytes. However, the limitation in nerve tissue acces-sibility to isolate the NSCs as well as their differentiation toward oligodendrocytes is still challenging. Purpose: In the present study, a hybrid polycaprolactone (PCL)-gelatin nanofiber scaffold mimicking the native extracellular matrix and axon morphology to direct the differentiation of bone marrow-derived NSCs to OLCs was introduced. Materials and Methods: In order to achieve a sustained release of T3, this factor was...