Loading...
Search for: anodic-oxides
0.01 seconds
Total 30 records

    Fabrication and Photoelectrochemical Characterization of Ordered Nanotube Arrays of TiO2 for Solar Cell Application

    , Ph.D. Dissertation Sharif University of Technology Mohammadpour, Raheleh (Author) ; Iraji zad, Aazam (Supervisor) ; Dolati, Abolghasem (Supervisor) ; Taghavinia, Neima (Co-Advisor)
    Abstract
    In this research we focus on study and fabrication of ordered nanotube arrays of titanium oxide and their applications in photoelectrochemical cell. Nanotubular films of titanium oxide have been fabricated using anodization method. Short-length nanotubes, less than one micrometer, have been synthesized in aqueous electrolyte containing deionized water, hydrofluoric acid and phosphoric acid. To get Micron-length nanotubes, we have employed organic electrolyte containing ethylene glycol, deionized water and fluoride ammonium. After fabrication, the photo-catalytic activity of nanotubular structures was evaluated by measuring the rate of degradation of in methylene blue aqueous solution. The... 

    Aluminum Production by Alumina Electrolysis Method with Using Inconel 617 Inert Anode

    , M.Sc. Thesis Sharif University of Technology Vakil, Mohammad Mahdi (Author) ; Halali, Mohammad (Supervisor)
    Abstract
    In this study, the performance of Inconel 617 anode as an inert anode in aluminum electrolysis process was studied. To carry out the research, first, an electrolyte was produced using NaF, KF, AlF3 and Al2O3 with a molar ratio of sodium and potassium fluoride to aluminum fluoride of 1.33. Next, aluminum electrolysis cell was made using Inconel 617 anode and cathode and the aforementioned electrolyte. To evaluate the Inconel 617 anode, the performance of the electrolysis cell in different conditions of temperature, anode-cathode distance, and excess potential was investigated in a period of one hour. Using anode mass measurements, cell potential and current density and scanning electron... 

    Synthesis of titanium oxide nanotubes and their decoration by MnO nanoparticles for biomedical applications

    , Article Ceramics International ; Volume 45, Issue 15 , 2019 , Pages 19275-19282 ; 02728842 (ISSN) Esmaeilnejad, A ; Mahmoudi, P ; Zamanian, A ; Mozafari, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this study, apatite formation ability on TiO2 nanotubes (TNTs) synthesized by anodizing process were compared with TNTs decorated by MnO nanoparticles. The MnO nanoparticles used for decoration process were fabricated via thermal decomposition method. At first, it was strived to find the optimal condition of anodizing process and the effect of applied voltages (15 V, 20 V, and 25 V) and process times (15 min, 20 min, and 25 min) on the diameter of the synthesized TNTs was investigated. Results of microscopic characterizations showed that the completely uniform structure of nanotubes with a diameter in the range of about 100–130 nm was achieved after 20 min of anodizing process at an... 

    Simultaneous determination of epinephrine and acetaminophen concentrations using a novel carbon paste electrode prepared with 2,2′-[1,2 butanediylbis(nitriloethylidyne)]-bis-hydroquinone and TiO2 nanoparticles

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 76, Issue 1 , 2010 , Pages 82-87 ; 09277765 (ISSN) Mazloum Ardakani, M ; Beitollahi, H ; Sheikh Mohseni, M. A ; Benvidi, A ; Naeimi, H ; Nejati Barzoki, M ; Taghavinia, N ; Sharif University of Technology
    2010
    Abstract
    A carbon paste electrode (CPE) modified with 2,2′-[1,2 butanediylbis(nitriloethylidyne)]-bis-hydroquinone (BBNBH) and TiO2 nanoparticles was used for the sensitive voltammetric determination of epinephrine (EP). The electrochemical response characteristics of the modified electrode toward EP and acetaminophen (AC) were investigated by cyclic and differential pulse voltammetry (CV and DPV). The results showed an efficient catalytic activity of the electrode for the electrooxidation of EP, which leads to a reduction in its overpotential by more than 270 mV. The effects of pH and potential sweep rate on the mechanism of the electrode process were investigated. The modified electrode exhibits an... 

    Selective voltammetric determination of d-penicillamine in the presence of tryptophan at a modified carbon paste electrode incorporating TiO2 nanoparticles and quinizarine

    , Article Journal of Electroanalytical Chemistry ; Volume 644, Issue 1 , Jan , 2010 , Pages 1-6 ; 15726657 (ISSN) Mazloum Ardakani, M ; Beitollahi, H ; Taleat, Z ; Naeimi, H ; Taghavinia, N ; Sharif University of Technology
    2010
    Abstract
    A carbon paste electrode (CPE) chemically modified with TiO2 nanoparticles and quinizarine (QZ) was used as a selective electrochemical sensor for the simultaneous determination of minor amounts of d-penicillamine (D-PA) and tryptophan (Trp). This modified electrode showed very efficient electrocatalytic activity for anodic oxidation of both d-PA and Trp. Substantial decreases of anodic overpotentials for both compounds made this analysis possible. Results of square wave voltammetry (SWV) using this modified electrode showed two well-resolved anodic waves for the oxidation of d-PA and Trp, which makes the simultaneous determination of both compounds possible. The peak potential for the... 

    Room temperature selective sensing of aligned Ni nanowires using impedance spectroscopy

    , Article Materials Research Express ; Volume 7, Issue 2 , 24 February , 2020 Mohammadi, M ; Fardindoost, S ; Iraji Zad, A ; Almasi Kashi, M ; Sharif University of Technology
    Institute of Physics Publishing  2020
    Abstract
    Room temperature gas sensing behavior of arrayed one-dimensional (1D) nickel nanowires (Ni NWs) are investigated using impedance spectroscopy. Ni nanowires synthesized via electrochemical deposition method based on anodic aluminum oxide (AAO) templates. Their structural characterization verified by scanning electron microscopy (SEM), x-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) analysis. Impedance spectroscopy as an essential technique utilized to understand the mechanism of gas interaction with the wires through the changes in their electronic behavior. Bode and Nyquist plots with the real and imaginary impedances are plotted versus frequency range of 500 Hz... 

    On the growth sequence of highly ordered nanoporous anodic aluminium oxide

    , Article Materials and Design ; Volume 27, Issue 10 , 2006 , Pages 983-988 ; 02613069 (ISSN) Ghorbani, M ; Nasirpouri, F ; Iraji zad, A ; Saedi, A ; Sharif University of Technology
    Elsevier Ltd  2006
    Abstract
    Anodic aluminium oxide films were fabricated by well known two-step anodizing process in oxalic acid electrolyte. The ordering characteristics (ordered pore domains, average pore diameter size and through-pore arrangement) of anodic aluminium oxide films, obtained in different growth sequences, were identified by microscopic analysis such as ex situ contact-mode atomic force microcopy and scanning electron microscopy. Flattened areas in which some pits are seen mostly cover the electropolished surface of aluminium. Single anodizing of aluminium produces a broad distribution of nanopore size, whereas induces a highly ordered hemispherical pattern, which plays the ordered nucleation sites for... 

    New smart carrageenan-based superabsorbent hydrogel hybrid: Investigation of swelling rate and environmental responsiveness

    , Article Journal of Applied Polymer Science ; Volume 117, Issue 6 , September , 2010 , Pages 3228-3238 ; 00218995 (ISSN) Salimi, H ; Pourjavadi, A ; Seidi, F ; Eftekhar Jahromi, P ; Soleyman, R ; Sharif University of Technology
    2010
    Abstract
    Synthesis of novel natural-based superabsorbents with improved properties is of prime importance in many applications. In this article we report an efficient synthesis of new polysaccharide-based superabsorbent hybrid composing carrageenan, acrylic acid, sodium acrylate, and 2-hydroxyethyl acrylate through homogenous solution polymerization process. Infrared spectroscopy and thermogravimetric analysis (TGA) were carried out to confirm the chemical structure of the hydrogel. Moreover, morphology of the samples was examined by scanning electron microscopy (SEM). To deeper studies on the structure-property relation in SAP hydrogels, three hydrogels with different acrylic acid/2-hydroxyethyl... 

    New protein-based hydrogel with superabsorbing properties: Effect of monomer ratio on swelling behavior and kinetics

    , Article Industrial and Engineering Chemistry Research ; Volume 47, Issue 23 , 2008 , Pages 9206-9213 ; 08885885 (ISSN) Pourjavadi, A ; Salimi, H ; Sharif University of Technology
    2008
    Abstract
    In this paper we report an efficient synthesis of hydrolyzed collagen-g-poly(sodium acrylate-co-2-hydroxyethyl aery late) hydrogel through chemical cross-linking by graft copolymerization of these two monomers onto the protein backbone in the presence of a cross-linker. Infrared spectroscopy and thermogravimetric analysis (TGA) were carried out to confirm the chemical structure of the hydrogel. Moreover, morphology of the samples was examined by scanning electron microscopy (SEM). To investigate the effect of monomer ratio on swelling behavior in various media three hydrogels with different acrylic acid/2-hydroxyethyl acrylate (AA/HEA) weight ratios were synthesized and swelling capacity was... 

    Modification of nanostructured anodized aluminum coatings by pulse current mode

    , Article Surface and Coatings Technology ; Volume 278 , 2015 , Pages 48-55 ; 02578972 (ISSN) Mohammadi, I ; Afshar, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this study, the effects of pulse current mode on corrosion resistance and mechanical properties of anodized coatings were explored. Thickness and hardness measurements, polarization and electrochemical impedance spectroscopy were employed to take mechanical and corrosion behaviors of the anodized coatings into consideration. Also, field-emission scanning electron microscopy (FE-SEM) was utilized to characterize the surface morphology of the coatings. It was shown that in short anodizing times, coating thickness is controlled by the heat concentrated on coating. Although at prolonged anodizing times, the coating thickness is affected by average current density. Hardness measurements showed... 

    Influence of PEO and mechanical keying on the strength of AA 5052 alloy/polypropylene friction stir spot welded joints

    , Article International Journal of Adhesion and Adhesives ; Volume 92 , 2019 , Pages 65-72 ; 01437496 (ISSN) Aliasghari, S ; Skeldon, P ; Zhou, X ; Ghorbani, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A study has been carried out of the effect of plasma electrolytic oxidation (PEO)on the strength of AA 5052 alloy/polypropylene joints prepared using friction stir spot welding (FSSW). The joint strengths were determined using lap-shear tests and failure modes were investigated using scanning electron microscopy. Comparisons were made between control joints prepared with the alloy in the as-rolled condition or the as-rolled condition with a mechanical key and with PEO-treated alloy, with or without a mechanical key. Mechanical keying alone, provided by infiltration of polymer into holes of either 3 or 4.5 mm diameter drilled in the alloy, yielded enhancements of the joint strength by a... 

    Hydroxyapatite based and anodic titania nanotube biocomposite coatings: fabrication, characterization and electrochemical behavior

    , Article Surface and Coatings Technology ; Volume 287 , 2016 , Pages 67-75 ; 02578972 (ISSN) Ahmadi, S ; Mohammadi, I ; Sadrnezhaad, S. K ; Sharif University of Technology
    Elsevier  2016
    Abstract
    The main challenges of biological implants are suitable strength, adhesion, biocompatibility and corrosion resistance. This paper discusses fabrication, characterization and electrochemical investigation of anodized Ti6Al4V without and with a hydroxyapatite (HA) layer, HA/TiO2 nanoparticles (NPs) and HA/TiO2 nanotubes (HA/anodized). X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS) were used to characterize and compare properties of different samples. Dense HA with uniform distribution and 12.8 ± 2 MPa adhesive strength enhanced to 19.2 ± 4 MPa by the addition of TiO2 nanoparticles and enhanced to 23.1 ± 4 MPa by the... 

    Facile synthesis of petal-like NiCo/NiO-CoO/nanoporous carbon composite based on mixed-metallic MOFs and their application for electrocatalytic oxidation of methanol

    , Article Applied Catalysis B: Environmental ; Volume 244 , 2019 , Pages 802-813 ; 09263373 (ISSN) Rezaee, S ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Porous carbon template decorated with mixed transition metals/metal oxides with tunable architecture is becoming increasingly important and attractive as a kind of novel electrode materials. In this way, mixed-metallic metal-organic frameworks (MOFs) provide an opportunity for fabrication of homogeneous mixed metals/metal oxides distribution in the porous carbon frame without any carbon precursor additive. Also, structures, dimensions and electrochemical performance of MOFs can be readily manipulated by simply tuning the metals molar ratio. In this study, we demonstrate the design and fabrication of petal-like NiCo/NiO-CoO metal/metal oxides with a rational composition embedded in 3D... 

    Fabrication of self-organised highly ordered titanium oxide nanotube arrays by anodic oxidation and characterisation

    , Article International Journal of Nanomanufacturing ; Volume 5, Issue 3-4 , 2010 , Pages 297-309 ; 17469392 (ISSN) Mohammadpour, R ; Ahadian, M. M ; Iraji Zad, A ; Taghavinia, N ; Dolati, A. G ; Sharif University of Technology
    2010
    Abstract
    Self-organised and vertically oriented titanium oxide nanotube array (TNTA) has been synthesised by potentiostat anodisation of Ti foil in fluoride-based electrolyte. By varying the anodisation voltage from 8 V to 24 V it was possible to gradually change the topologies of nanotubes. The size of TNTAs was measured using SEM images and also determined based on a non-destructive optical method. In addition, photoelectrochemical properties of nanotubular TiO2/Ti electrodes were examined by anodic photocurrent response, potentiodynamic polarisation measurements and electrochemical impedance spectroscopy. A general equivalent circuit model was proposed for photoelectrochemical system consists of... 

    Electrophoretic encapsulation for slow release of vancomycin from perpendicular TiO2 nanotubes grown on Ti6Al4V electrodes

    , Article Materials Research Express ; Volume 6, Issue 12 , 2019 ; 20531591 (ISSN) ; https://iopscience.iop.org/article/10.1088/2053-1591/ab6c98 Riahi, Z ; Ahmadi Seyedkhani, S ; Sadrnezhaad, S. K ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Ordered perpendicular TiO2 nanotubes (TNT) with 405 to 952 nm length and 60 to 90 nm diameter were grown via 40 to 120 min anodization of Ti6Al4V flat substrates. The samples were called TNT-40, -60, -80, -100, and -120. Vancomycin was loaded on the bare and anodized electrodes by separate immersion and electrophoretic (EP) deposition procedures. EP loading resulted in storage capacity of 5221.86 μg cm-2 for TNT-80 which was much higher than 1036.75 μg cm-2 of immersed sample. Drug release comprised of three stages: (i) burst release (78% for the bare, and 23% for the TNT-80 sample), (ii) gradual transport (21% for the bare, and 64% for the TNT-80 sample), and (iii) equilibrium. Transfer... 

    Electrophoretic encapsulation for slow release of vancomycin from perpendicular TiO2 nanotubes grown on Ti6Al4V electrodes

    , Article Materials Research Express ; Volume 6, Issue 12 , 2019 ; 20531591 (ISSN) Riahi, Z ; Ahmadi Seyedkhani, S ; Sadrnezhaad, S. K ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Ordered perpendicular TiO2 nanotubes (TNT) with 405 to 952 nm length and 60 to 90 nm diameter were grown via 40 to 120 min anodization of Ti6Al4V flat substrates. The samples were called TNT-40, -60, -80, -100, and -120. Vancomycin was loaded on the bare and anodized electrodes by separate immersion and electrophoretic (EP) deposition procedures. EP loading resulted in storage capacity of 5221.86 μg cm-2 for TNT-80 which was much higher than 1036.75 μg cm-2 of immersed sample. Drug release comprised of three stages: (i) burst release (78% for the bare, and 23% for the TNT-80 sample), (ii) gradual transport (21% for the bare, and 64% for the TNT-80 sample), and (iii) equilibrium. Transfer... 

    Electrodeposition of Ni-Fe-Co alloy nanowire in modified AAO template

    , Article Materials Chemistry and Physics ; Volume 91, Issue 2-3 , 2005 , Pages 417-423 ; 02540584 (ISSN) Saedi, A ; Ghorbani, M ; Sharif University of Technology
    2005
    Abstract
    Anodic aluminum oxide (AAO) was used as a template to prepare highly ordered Ni-Fe-Co alloy nanowire arrays. This membrane was fabricated with two-step anodizing method. It is found that there is an optimum barrier thickness to obtain a successful electrodeposition in pores of AAO. The thickness of barrier layer can be modified by additional electrochemical process after completing the anodizing step. Barrier layer thinning can create a rooted structure at the bottom side of the AAO pores and the electrodeposited nanowire arrays. The triple Ni-Fe-Co alloy was deposited in AAO membrane by ac voltage in a simple sulfate bath. The composition of nanowires shows anomalous deposition features... 

    Electrochemical oxidation of saccharose on copper (hydr)oxide-modified electrode in alkaline media

    , Article Cuihua Xuebao/Chinese Journal of Catalysis ; Volume 31, Issue 11 , 2010 , Pages 1351-1357 ; 02539837 (ISSN) Jafarian, M ; Rashvand Avei, M ; Danaee, I ; Gobal, F ; Mahjani, M. G ; Sharif University of Technology
    2010
    Abstract
    A stable copper (hydr)oxide-modified electrode was prepared in 0.5 mol/L NaOH solution by cyclic voltammetry in the range of -250 to 1000 mV. It can be used for electrochemical studies in the range of -250 to 1000 mV without interfering peaks because there is no oxidation of copper. During an anodic potential sweep, the electro-oxidation of saccharose on Cu occurred by the formation of CuIII and this reaction also occurred in the early stages of the reversed cycle until it is stopped by the negative potentials. A mechanism based on the electro-chemical generation of CuIII active sites and their subsequent consumption by saccharose was proposed, and the rate law and kinetic parameters were... 

    Electrochemical determinations of 6-mercaptopurine on the surface of a carbon nanotube-paste electrode modified with a cobalt salophen complex

    , Article Journal of Solid State Electrochemistry ; Volume 16, Issue 4 , April , 2012 , Pages 1643-1650 ; 14328488 (ISSN) Shahrokhian, S ; Ghorbani Bidkorbeh, F ; Mohammadi, A ; Dinarvand, R ; Sharif University of Technology
    2012
    Abstract
    A mixture of multi-walled carbon nanotube/graphite paste electrode modified with a salophen complex of cobalt was prepared and was applied for the study of the electrochemical behavior of 6-mercaptopurine (MP) using cyclic and differential pulse voltammetry (DPV). An excellent electrocatalytic activity toward the oxidation of MP was achieved, which led to a considerable lowering in the anodic overpotential and remarkable increase in the response sensitivity in comparison with unmodified electrode. Utilizing DPV method, a linear dynamic range of 1-100 μM with detection limit of 0.1 μM was obtained in phosphate buffer of pH 3.0. The electrochemical detection system was very stable, and the... 

    Effect of pulse current parameters on the mechanical and corrosion properties of anodized nanoporous aluminum coatings

    , Article Materials Chemistry and Physics ; Volume 183 , 2016 , Pages 490-498 ; 02540584 (ISSN) Mohammadi, I ; Ahmadi, Sh ; Afshar, A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this study, the effects of pulse current parameters on corrosion resistance and mechanical properties of anodized coatings were evaluated. Hardness measurements, polarization and electrochemical impedance spectroscopy tests were employed to investigate the mechanical properties and corrosion behavior of these coatings. Also, field emission scanning electron microscopy (FE-SEM) was used to analyze the surface morphology and microstructure of the coatings. It was found that the properties of anodized coatings were dependent on various parameters, among which, time, temperature and pulse current parameters (current density limit, frequency and duty cycle) were optimized. Analysis of Variance...