Loading...
Search for: artificial-limbs
0.011 seconds

    A robotic model of transfemoral amputee locomotion for design optimization of knee controllers

    , Article International Journal of Advanced Robotic Systems ; Volume 10 , 2013 ; 17298806 (ISSN) Shandiz, M. A ; Farahmand, F ; Osman, N. A. A ; Zohoor, H ; Sharif University of Technology
    2013
    Abstract
    A two-dimensional, seven link, nine degrees of freedom biped model was developed to investigate the dynamic characteristics of normal and transfemoral amputee locomotion during the entire gait cycle. The equations of motion were derived using the Lagrange method and the stance foot-ground contact was simulated using a five-point penetration model. The joint driving torques were obtained using forward dynamic optimization of the normal human gait and applied to the intact joints of the amputee. Three types of motion controllers; frictional, elastic and hydraulic were considered for the prosthetic joints of the amputee and their design parameters were optimized to achieve the closest... 

    Dynamic simulation of the biped normal and amputee human gait

    , Article Mobile Robotics: Solutions and Challenges - Proceedings of the 12th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR 2009, 9 September 2009 through 11 September 2009, Istanbul ; 2010 , Pages 1113-1120 ; 9814291269 (ISBN) ; 9789814291262 (ISBN) Shandiz, M. A ; Farahmand, F ; Zohour, H ; Sharif University of Technology
    2010
    Abstract
    A two-dimensional seven link biped dynamic model was developed to investigate the mechanical characteristics of the normal and amputee locomotion during the complete gait cycle. The foot-ground contact was simulated using a five-point penetration contact model. The equations of motion were derived using Lagrange method. Optimization of the normal human walking model provided constant coefficients for the driving torque equations that could reasonably reproduce the normal kinematical pattern. The resulting torques were then applied to the intact joints of the amputee model with a prosthetic leg equipped with a kinematical driver controller for the ankle and either a hydraulic, elastic or... 

    A fuzzy sequential locomotion mode recognition system for lower limb prosthesis control

    , Article 2017 25th Iranian Conference on Electrical Engineering, ICEE 2017, 2 May 2017 through 4 May 2017 ; 2017 , Pages 2153-2158 ; 9781509059638 (ISBN) Shahmoradi, S ; Bagheri Shouraki, S ; Sharif University of Technology
    Abstract
    Control of powered lower limb prostheses has a locomotion mode-dependent structure which demands a pattern recognizer that can classify the current locomotion mode and also detect transitions between them in an appropriate time. In order to achieve this goal, this paper presents a Fuzzy sequential locomotion mode recognition system to classify daily locomotion modes including level- walking, stair climbing, slope walking, standing and sitting using low-cost mechanical sensors. Since these signals have a quasi-periodic nature, using sequential pattern recognition tools, such as Hidden Markov Model(HMM) improves the recognition performance considering they use sequences of information to make... 

    Intelligent control of an MR prosthesis knee using of a hybrid self-organizing fuzzy controller and multidimensional wavelet NN

    , Article Journal of Mechanical Science and Technology ; Volume 31, Issue 7 , 2017 , Pages 3509-3518 ; 1738494X (ISSN) Sayyaadi, H ; Zareh, S. H ; Sharif University of Technology
    Korean Society of Mechanical Engineers  2017
    Abstract
    A Magneto rheological (MR) rotary brake as a prosthesis knee is addressed here. To the gait of the amputee, the brake, automatically adapts knee damping coefficient using only local sensing of the knee torque and position. It is difficult to design a model-based controller, since the MR knee system has nonlinear and very complicated governing mathematical equations. Hence, a Hybrid self-organizing fuzzy controller and multidimensional wavelet neural network (HSFCMWNN) is proposed here to control the knee damping coefficient using of the inverse dynamics of the MR rotary damper. A Self-organizing fuzzy controller (SOFC) is also proposed and during the control process, the SOFC continually... 

    Design optimization of an above-knee prosthesis based on the kinematics of gait

    , Article 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08, Vancouver, BC, 20 August 2008 through 25 August 2008 ; 2008 , Pages 4274-4277 ; 9781424418152 (ISBN) Pejhan, S ; Farahmand, F ; Parnianpour, M ; Sharif University of Technology
    2008
    Abstract
    A dynamic model of an above-knee prosthesis during the complete gait cycle was developed. The model was based on a two-dimensional multi-body mechanical system and included a hydraulic and an elastic controller for the knee and a kinematical driver controller for the prosthetic ankle. The equations of motion were driven using Lagrange method. Simulation of the foot contact was conducted using a two-point penetration contact model. The knee elastic and hydraulic controller units, the knee extension stop, and the kinematical driver controller of the ankle were represented by a spring and a dashpot, a nonlinear spring, and a torsional spring-damper within a standard prosthetic configuration.... 

    Differences in muscle synergies between healthy subjects and transfemoral amputees during normal transient-state walking speed

    , Article Gait and Posture ; Volume 76 , February , 2020 , Pages 98-103 Mehryar, P ; Shourijeh, M. S ; Rezaeian, T ; Khandan, A. R ; Messenger, N ; O'Connor, R ; Farahmand, F ; Dehghani Sanij, A ; Sharif University of Technology
    Elsevier B. V  2020
    Abstract
    Background: Lower limb amputation is a major public health issue globally, and its prevalence is increasing significantly around the world. Previous studies on lower limb amputees showed analogous complexity implemented by the neurological system which does not depend on the level of amputation. Research question: What are the differences in muscle synergies between healthy subjects (HS) and transfemoral amputees (TFA) during self-selected normal transient-state walking speed? Methods: thirteen male HS and eleven male TFA participated in this study. Surface electromyography (sEMG) data were collected from HS dominant leg and TFA intact limb. Concatenated non-negative matrix factorization... 

    Muscular activity comparison between non-amputees and transfemoral amputees during normal transient-state walking speed

    , Article Medical Engineering and Physics ; Volume 95 , 2021 , Pages 39-44 ; 13504533 (ISSN) Mehryar, P ; Shourijeh, M. S ; Rezaeian, T ; Khandan, A. R ; Messenger, N ; O'Connor, R ; Farahmand, F ; Dehghani Sanij, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Research question: Would there be differences in muscle activation between healthy subjects’ (HS) dominant leg and transfemoral amputees’ (TFA) intact-leg/contralateral-limb (IL) during normal transient-state walking speed? Methods: The muscle activation patterns are obtained by calculating the linear envelope of the EMG signals for each group. The activation patterns/temporal changes are compared between-population using statistical parametric mapping (SPM). Results: Individual muscle activity showed significant differences in all muscles except vastus lateralis (VL), semitendinosus (SEM) and tensor fascia latae (TFL) activities. Significance: The information could be used by the therapists... 

    A neuro-fuzzy inference system for sEMG-based identification of hand motion commands

    , Article IEEE Transactions on Industrial Electronics ; Volume 58, Issue 5 , 2011 , Pages 1952-1960 ; 02780046 (ISSN) Khezri, M ; Jahed, M ; Sharif University of Technology
    2011
    Abstract
    Surface electromyogram (sEMG) signals, a noninvasive bioelectric signal, can be used for the rehabilitation and control of artificial extremities. Current sEMG pattern-recognition systems suffer from a limited number of patterns that are frequently intensified by the unsuitable accuracy of the instrumentation and analytical system. To solve these problems, we designed a multistep-based sEMG pattern-recognition system where, in each step, a stronger more capable relevant technique with a noticeable improved performance is employed. In this paper, we utilized the sEMG signals to classify and recognize six classes of hand movements. We employed an adaptive neurofuzzy inference system (ANFIS) to... 

    An exploratory study to design a novel hand movement identification system

    , Article Computers in Biology and Medicine ; Volume 39, Issue 5 , 2009 , Pages 433-442 ; 00104825 (ISSN) Khezri, M ; Jahed, M ; Sharif University of Technology
    2009
    Abstract
    Electromyogram signal (EMG) is an electrical manifestation of contractions of muscles. Surface EMG (sEMG) signal collected from the surface of skin has been used in diverse applications. One of its usages is in pattern recognition of hand prosthesis movements. The ability of current prosthesis devices has been generally limited to simple opening and closing tasks, minimizing their efficacy compared to natural hand capabilities. In order to extend the abilities and accuracy of prosthesis arm movements and performance, a novel sEMG pattern recognizing system is proposed. To extract more pertinent information we extracted sEMGs for selected hand movements. These features constitute our main... 

    Neuro-fuzzy surface EMG pattern recognition for multifunctional hand prosthesis control

    , Article 2007 IEEE International Symposium on Industrial Electronics, ISIE 2007, Caixanova - Vigo, 4 June 2007 through 7 June 2007 ; 2007 , Pages 269-274 ; 1424407559 (ISBN); 9781424407552 (ISBN) Khezri, M ; Jahed, M ; Sadati, N ; Sharif University of Technology
    2007
    Abstract
    Electromyogram (EMG) signal is an electrical manifestation of muscle contractions. EMG signal collected from surface of the skin, a non-invasive bioelectric signal, can be used in different rehabilitation applications and artificial extremities control. This study has proposed to utilize the surface EMG (SEMG) signal to recognize patterns of hand prosthesis movements. It suggests using an adaptive neuro-fuzzy inference system (ANFIS) to identify motion commands for the control of a prosthetic hand. In this work a hybrid method for training fuzzy system, consisting of back-propagation (BP) and least mean square (LMS) is utilized. Also in order to optimize the number of fuzzy rules, a... 

    Effects of prosthetic mass distribution on the spatiotemporal characteristics and knee kinematics of transfemoral amputee locomotion

    , Article Gait and Posture ; Volume 37, Issue 1 , 2013 , Pages 78-81 ; 09666362 (ISSN) Hekmatfard, M ; Farahmand, F ; Ebrahimi, I ; Sharif University of Technology
    2013
    Abstract
    This study was designed to investigate the effect of changing the location of the center of mass (COM) of transfemoral prostheses on the spatiotemporal and kinematical characteristics of the amputee gait, while maintaining the prosthetic mass fixed. Ten men with unilateral traumatic transfemoral amputation participated in gait analysis, 2-min walk and subject preference tests. Weights were added to the original prosthetic legs in three conditions: 600. g added to the ankle, 600. g added at 10. cm distal to the prosthetic knee, and 300. g added to the ankle, and 300. g at 10. cm distal to the knee. For each prosthetic mass condition, the stride and step lengths, stepping speed, stance, swing... 

    A novel stable robust adaptive impedance control scheme for ankle prostheses

    , Article 5th RSI International Conference on Robotics and Mechatronics, IcRoM 2017, 25 October 2017 through 27 October 2017 ; 2018 , Pages 63-68 ; 9781538657034 (ISBN) Heidarzadeh, S ; Sharifi, M ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Abstract
    A stable robust adaptive impedance control strategy is introduced here as a model-based low-level control scheme for active ankle prostheses. The effects of amputee-prosthesis and prosthesis-environment interactions are included in the controller design. An interesting feature of the proposed controller is that only shank and ankle angles and angular velocities, and ground reaction forces are required to implement the control law. In other words, no feedback from amputee-prosthesis interaction forces and moment, global or local positions, and accelerations of amputated place is required. Using a Lyapunov analysis, exponential convergence characteristics of the proposed controller are proven.... 

    Personalized design of ankle-foot prosthesis based on computer modeling of amputee locomotion

    , Article Assistive Technology ; September , 2018 ; 10400435 (ISSN) Gharini, M ; Mohammadi Moghaddam, M ; Farahmand, F ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    This study proposes a computer modeling approach to find the optimal damping coefficients of the viscoelastic ankle-foot prostheses for each specific amputee. A two-dimensional locomotion model was developed for a transtibial amputee and personalized using his body measures and the reference gait pattern of an equivalent able-bodied subject. By employing the forward dynamic simulation, the amputee’s locomotion was synthesized for different prosthetic settings to find the optimal damping coefficients, based on a kinematics and a total work cost function. Results indicated a good agreement between the model predictions and the experimental observations. © 2018, © 2018 RESNA  

    Personalized design of ankle-foot prosthesis based on computer modeling of amputee locomotion

    , Article Assistive Technology ; Volume 32, Issue 2 , 2020 , Pages 100-108 Gharini, M ; Mohammadi Moghaddam, M ; Farahmand, F ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    This study proposes a computer modeling approach to find the optimal damping coefficients of the viscoelastic ankle-foot prostheses for each specific amputee. A two-dimensional locomotion model was developed for a transtibial amputee and personalized using his body measures and the reference gait pattern of an equivalent able-bodied subject. By employing the forward dynamic simulation, the amputee’s locomotion was synthesized for different prosthetic settings to find the optimal damping coefficients, based on a kinematics and a total work cost function. Results indicated a good agreement between the model predictions and the experimental observations. © 2018, © 2018 RESNA  

    Kinematic and dynamic analysis of the gait cycle of above-knee amputees

    , Article Scientia Iranica ; Volume 13, Issue 3 , 2006 , Pages 261-271 ; 10263098 (ISSN) Farahmand, F ; Rezaeian, T ; Narimani, R ; Hejazi Dinan, P ; Sharif University of Technology
    Sharif University of Technology  2006
    Abstract
    The change of gait pattern and muscular activity following amputation is thought to be responsible for the higher incidence of joint degenerative disorders observed in amputees. Considering the lack of consistent data in the literature, the purpose of the present study was to measure and analyze the spatio-temporal variables, the kinematics and, particularly, the net joint moments of the intact and prosthetic limbs of above knee amputee subjects during walking and to compare the results with those of normals. The gait characteristics of five transfemoral amputees and five normal subjects were measured using videography and a force platform. The human body was modeled as a 2-D sagittal plane... 

    Robust ground reaction force estimation and control of lower-limb prostheses: theory and simulation

    , Article IEEE Transactions on Systems, Man, and Cybernetics: Systems ; 2018 ; 21682216 (ISSN) Azimi, V ; Nguyen, T. T ; Sharifi, M ; Fakoorian, A ; Simon, D ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Ground reaction force (GRF) characteristics of amputee walking are important for the analysis of clinical gait data, and also to update model reference adaptive impedance (MRAI) controllers. GRF estimation is a better alternative than direct GRF measurement because of the disadvantages of load cells, such as high cost, integration difficulties due to weight and physical dimensions, the possibility of overload, and measurement noise. This paper presents four robust MRAI observer/controller combinations for GRF estimation-based control of a prosthesis and a legged robot model in the presence of parametric uncertainties and unmodeled dynamics, in which the robot model is employed to mimic... 

    Robust ground reaction force estimation and control of lower-limb prostheses: theory and simulation

    , Article IEEE Transactions on Systems, Man, and Cybernetics: Systems ; Volume 50, Issue 8 , 2020 , Pages 3024-3035 Azimi, V ; Nguyen, T. T ; Sharifi, M ; Fakoorian, S. A ; Simon, D ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Ground reaction force (GRF) characteristics of amputee walking are important for the analysis of clinical gait data, and also to update model reference adaptive impedance (MRAI) controllers. GRF estimation is a better alternative than direct GRF measurement because of the disadvantages of load cells, such as high cost, integration difficulties due to weight and physical dimensions, the possibility of overload, and measurement noise. This paper presents four robust MRAI observer/controller combinations for GRF estimation-based control of a prosthesis and a legged robot model in the presence of parametric uncertainties and unmodeled dynamics, in which the robot model is employed to mimic...