Loading...
Search for: asphaltene-phase
0.012 seconds

    Phase behavior modeling of asphaltene precipitation for heavy crude including the effect of pressure and temperature

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Vol. 36, issue. 19 , Feb , 2014 , p. 2087-2094 ; ISSN: 15567036 Tavakkoli, M ; Ghazanfari, M. H ; Masihi, M ; Kharrat, R ; Sharif University of Technology
    Abstract
    Despite numerous experimental and modeling studies, the role of temperature changes on phase behavior modeling of asphaltene precipitation and, in consequence, developing of asphaltene phase envelope in heavy crudes, remains a topic of debate in the literature. In this work, a computer code based on the non-isothermal improved solid model has been developed and used for predicting asphaltene precipitation data for one of the Iranian heavy crudes at different levels of temperature and pressure. The parameters of the non-isothermal model were tuned using three onset pressures at three different temperatures, and the asphaltene phase envelope was developed. The results showed that at high... 

    Phase behavior modeling of asphaltene precipitation for heavy crudes: A promising tool along with experimental data

    , Article International Journal of Thermophysics ; Vol. 33, issue. 12 , December , 2012 , p. 2251-2266 ; ISSN: 0195928X Tavakkoli, M ; Kharrat, R ; Masihi, M ; Ghazanfari, M. H ; Fadaei, S ; Sharif University of Technology
    Abstract
    Thermodynamic modeling is known as a promising tool for phase behavior modeling of asphaltene precipitation under different conditions such as pressure depletion and CO2 injection. In this work, a thermodynamic approach is used for modeling the phase behavior of asphaltene precipitation. The precipitated asphaltene phase is represented by an improved solid model, while the oil and gas phases are modeled with an equation of state. The PR-EOS was used to perform flash calculations. Then, the onset point and the amount of precipitated asphaltene were predicted. A computer code based on an improved solid model has been developed and used for predicting asphaltene precipitation data for one of... 

    Prediction of asphaltene precipitation during pressure depletion and CO2 injection for heavy crude

    , Article Petroleum Science and Technology ; Vol. 28, issue. 9 , Mar , 2009 , p. 892-902 ; ISSN: 10916466 Tavakkoli, M ; Kharrat, R ; Masihi, M ; Ghazanfari, M. , H ; Sharif University of Technology
    Abstract
    In this work, a thermodynamic approach is used for modeling the phase behavior of asphaltene precipitation. The precipitated asphaltene phase is represented by an improved solid model, and the oil and gas phases are modeled with an equation of state. The Peng-Robinson equation of state (PR-EOS) was used to perform flash calculations. Then, the onset point and the amount of precipitated asphaltene were predicted. A computer code based on the solid model was developed and used for predicting asphaltene precipitation data reported in the literature as well as the experimental data obtained from high-pressure, high-temperature asphaltene precipitation experiments performed on Sarvak reservoir... 

    Phase behavior modeling of asphaltene precipitation for heavy crudes: A promising tool along with experimental data

    , Article International Journal of Thermophysics ; Volume 33, Issue 12 , December , 2012 , Pages 2251-2266 ; 0195928X (ISSN) Tavakkoli, M ; Kharrat, R ; Masihi, M ; Ghazanfari, M. H ; Fadaei, S ; Sharif University of Technology
    2012
    Abstract
    Thermodynamic modeling is known as a promising tool for phase behavior modeling of asphaltene precipitation under different conditions such as pressure depletion and CO2 injection. In this work, a thermodynamic approach is used for modeling the phase behavior of asphaltene precipitation. The precipitated asphaltene phase is represented by an improved solid model, while the oil and gas phases are modeled with an equation of state. The PR-EOS was used to perform flash calculations. Then, the onset point and the amount of precipitated asphaltene were predicted. A computer code based on an improved solid model has been developed and used for predicting asphaltene precipitation data for one of... 

    Prediction of asphaltene precipitation during pressure depletion and CO2 injection for heavy crude

    , Article Petroleum Science and Technology ; Volume 28, Issue 9 , Apr , 2010 , Pages 892-902 ; 10916466 (ISSN) Tavakkoli, M ; Kharrat, R ; Masihi, M ; Ghazanfari, M. H ; Sharif University of Technology
    2010
    Abstract
    In this work, a thermodynamic approach is used for modeling the phase behavior of asphaltene precipitation. The precipitated asphaltene phase is represented by an improved solid model, and the oil and gas phases are modeled with an equation of state. The Peng-Robinson equation of state (PR-EOS) was used to perform flash calculations. Then, the onset point and the amount of precipitated asphaltene were predicted. A computer code based on the solid model was developed and used for predicting asphaltene precipitation data reported in the literature as well as the experimental data obtained from high-pressure, high-temperature asphaltene precipitation experiments performed on Sarvak reservoir... 

    Dynamic modeling and optimization of asphaltene deposition in reservoir rocks using genetic algorithm

    , Article 72nd European Association of Geoscientists and Engineers Conference and Exhibition 2010: A New Spring for Geoscience. Incorporating SPE EUROPEC 2010 ; Volume 6 , 2010 , Pages 4291-4295 ; 9781617386671 (ISBN) Bagheri, M. B ; Kharrat, R ; Hemmatfar, V ; Ghotbi, C ; Sharif University of Technology
    Society of Petroleum Engineers  2010
    Abstract
    Asphaltene deposition is a problematic challenge for oil production. Changes in key parameters like pressure and fluid composition during natural depletion and different gas injection scenarios may result in asphaltene precipitation and deposition. In this work, a model is developed by application of mass balance equations, momentum equation, asphaltene deposition and permeability reduction models. An algorithm is developed to perform iterative procedure to solve the numerical equations that contains highly coupled variables. Indeed, an equation is introduced to calculate the saturation of the precipitated asphaltene phase. Model parameters were determined by genetic algorithm which is a... 

    An improvement of thermodynamic micellization model for prediction of asphaltene precipitation during gas injection in heavy crude

    , Article Fluid Phase Equilibria ; Volume 308, Issue 1-2 , September , 2011 , Pages 153-163 ; 03783812 (ISSN) Tavakkoli, M ; Masihi, M ; Ghazanfari, M. H ; Kharrat, R ; Sharif University of Technology
    Abstract
    Thermodynamic micellization model is known as an appropriate approach for prediction of asphaltene precipitation. However, the reliability (i.e. accuracy) of this model for whole range of pressure or injected gas mole percent must be checked. In practice, the accuracy can be improved by using a suitable characterization method. In this research, a computer code for implementing the thermodynamic micellization model has been developed. Having used this program, we make the prediction of asphaltene precipitation by using data reported in the literature as well as the experimental data obtained from high pressure, high temperature asphaltene precipitation experiments under gas injection...