Loading...
Search for: atmospheric-pressure
0.012 seconds
Total 57 records

    Nanofluid preparation, stability and performance for CO2 absorption and desorption enhancement: A review

    , Article Journal of Environmental Management ; Volume 313 , 2022 ; 03014797 (ISSN) Tavakoli, A ; Rahimi, K ; Saghandali, F ; Scott, J ; Lovell, E ; Sharif University of Technology
    Academic Press  2022
    Abstract
    In recent years, the importance of capturing CO2 has increased due to the necessity of minimizing climate change and the detrimental effects of CO2 emissions from industrial processes. CO2 absorption, as one of the most mature carbon capture technologies, has been improved by introducing nanosized particles into liquid absorbents. Nanofluids have been the subject of interest in many studies recently due to their tremendous impact on absorption. This review comprehensively examines the CO2 absorption behavior for nanofluids through the investigation of different absorption systems. Potential mechanisms for improving the absorption/regeneration performance of nanoabsorbents as well as the... 

    Improved method for increasing accessible pores of MIL-101(Cr) by encapsulation and removal of Phosphotungstic acid (PTA): Pd/PTA-MIL-101(Cr) as an effective catalyst for CO oxidation

    , Article Journal of Cleaner Production ; Volume 347 , 2022 ; 09596526 (ISSN) Abbasi, F ; Karimi Sabet, J ; Abbasi, Z ; Ghotbi, C ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This study forwards a novel and simple approach for encapsulation of Phosphotungstic acid (PTA) into MIL-101(Cr) cavities to develop PTA-MIL-101(Cr) with a high surface area. In this method, the resulting surface area of PTA-MIL-101(Cr) (3563 m2/g) is 1.72 times that of MIL-101(Cr) due to the existence of more accessible pores which are formed by leaching of PTAs incorporated inside MIL-101(Cr) pores during the intense washing. Catalysts are investigated in CO oxidation under atmospheric pressure and feed composition of 1%CO, 20%O2, and 79%He. 3%Pd/PTA-MIL-101(Cr) shows 100%CO conversion at T = 145 °C and outperforms PTA, PTA-MIL-101(Cr), Pd/PTA, 1–3%Pd/MIL-101(Cr), Pd-PTA/MIL-101(Cr), and... 

    A two step Microwave-assisted coke resistant mesoporous Ni-Co catalyst for methane steam reforming

    , Article Fuel ; Volume 317 , 2022 ; 00162361 (ISSN) Etminan, A ; Sadrnezhaad, S. K ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Methane steam reforming (MSR) is an assuring reaction using steam to produce H2 as clean energy over a nicκel-based catalyst. We synthesized mesoporous monometallic NiMgAl2O4 and bimetallic NiCoMgAl2O4 catalysts in a two-step combustion method using a mix of fuels and powder metallurgy. BET-BJH, XRD, TGA, TPR, FESEM, and EDX-mapping characterized surface area, porosity, morphology, crystalline structure, and metal-support interaction behavior. The products exhibited strong interaction of well-structured MgAl2O4 spinel with NiO, in both specimens. The MSR evaluation tests at 750 °C under atmospheric pressure, CH4:H2O feed ratio of 1:1.2 showed the bimetallic catalyst has the highest... 

    Ionic liquid excess molar volume prediction: a conceptual comparison

    , Article Journal of Molecular Liquids ; Volume 336 , 2021 ; 01677322 (ISSN) Bagheri, H ; Karimi, N ; Dan, S ; Notej, B ; Ghader, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this study, the prediction of excess molar volume of ionic liquid + solvent binary system is described using modified two-parameter and three-parameter cubic equation of state (CEoS). The studied binary systems are consisted of 41 ionic liquids, 40 solvents and 5293 data point in the wide temperature range (278.15–353.15 K), ionic liquid mole fraction (0.0036–0.9920) and atmospheric pressure i.e. P = 1 bar. At the first step, the volume-translated parameter (c) was obtained based on three linear, distance function and exponential-type temperature-dependent cases and using experimental pure density. After that, and due to easy-to-use of c-parameter, various formula was presented based on... 

    Experimental investigation on the effects of swirlers configurations and air inlet partitioning in a partially premixed double high swirl gas turbine model combustor

    , Article Journal of Energy Resources Technology, Transactions of the ASME ; Volume 143, Issue 1 , 2021 ; 01950738 (ISSN) Mardani, A ; Rekabdarkolaei, B. A ; Rastaaghi, H. R ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2021
    Abstract
    In this work, a double-high swirl gas turbine model combustor (GTMC) has been experimentally investigated to identify the effects of air partitioning and swirlers geometry on combustion characteristics in terms of flame stability, exhaust gas temperature, NOx generation, and combustion efficiency. This high swirl model combustor is originally developed in the German Aerospace Center (DLR) and known as GTMC and recently reconstructed at Sharif University's Combustion Laboratory (named as SGTMC). Here, SGTMC run for liquefied petroleum gas (LPG) fuel and air oxidizer at room temperature and atmospheric pressure. Eleven different burner geometries, M1-M11, are considered for the aims of this... 

    New insight into reaction mechanisms of TiCl4 for the synthesis of TiO2 nanoparticles in H2O-assisted atmospheric-pressure CVS process

    , Article Materials Science and Engineering B: Solid-State Materials for Advanced Technology ; Volume 264 , 2021 ; 09215107 (ISSN) Rahiminezhad Soltani, M ; Saberyan, K ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Crystalline anatase TiO2 nanoparticles were synthesized in the gas phase using an H2O-assisted atmospheric-pressure CVS process. Simultaneous oxidation/hydrolysis of TiCl4 in the H2O-assisted APCVS process demonstrates the feasibility of facile fabrication and the designed synthesis of TiO2 nanoparticles in atmospheric pressure. Kinetics and thermodynamics studies of TiCl4 reactions in the gas phase illustrated oxidation or hydrolysis domination theoretically and were confirmed by experimental runs. Effects of H2O/O2 ratio on the reactions mechanisms, phase formation, size characteristics, morphology, and purity of TiO2 nanoparticles were experimentally studied using various analytical... 

    Insights on the speed of sound in ionic liquid binary mixtures: Investigation of influential parameters and construction of predictive models

    , Article Journal of Molecular Liquids ; Volume 326 , 2021 ; 01677322 (ISSN) Sahandi, P. J ; Salimi, M ; Iranshahi, D ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Relative novelty and wide functionality of ionic liquids (ILs) have led to a surge in the studies devoted to experimental determination of their physicochemical properties. Systematic collection and analysis of the available data and development of predictive models to address the extreme diversity of IL systems are of great value in this regard. In the present work, the significance of speed of sound in ILs and their mixtures was outlined and related theoretical concepts were surveyed. A comprehensive database was utilized for the construction of predictive models based on least square support vector machine. By constructing four different models, the influence of temperature, molecular... 

    Fractal analysis of asphaltene aggregation phenomena in live oils at elevated pressure and temperature

    , Article Particulate Science and Technology ; Volume 38, Issue 4 , 2020 , Pages 454-463 Mohammadi, S ; Rashidi, F ; Mousavi Dehghani, S. A ; Ghazanfari, M. H ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    In this work, high-pressure microscopy technique was used to measure the size and fractal dimension of asphaltene aggregates formed in different live oil samples at elevated pressures and temperatures. It was found that the asphaltene aggregates in live oil samples are irregular fractal-like structures with pressure−temperature-dependent fractal dimensions. By monitoring the variation of the fractal dimension and size of the asphaltene aggregates with pressure and temperature, the mechanisms responsible for asphaltene aggregation process at elevated pressures and temperatures can be well predicted. The range of fractal dimension of asphaltene aggregates in live oils is similar to that... 

    Artificial neural network integrated with thermodynamic equilibrium modeling of downdraft biomass gasification-power production plant

    , Article Energy ; Volume 213 , 2020 Safarian, S ; Ebrahimi Saryazdi, S. M ; Unnthorsson, R ; Richter, C ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This study is a novel attempt in developing of an Artificial neural network (ANN) model integrated with a thermodynamic equilibrium approach for downdraft biomass gasification integrated power generation unit. The objective of the study is to predict the net output power from the systems derived from various kinds of biomass feedstocks under atmospheric pressure and various operating conditions. The input parameters used in the models are elemental analysis compositions (C, O, H, N and S), proximate analysis compositions (moisture, ash, volatile material and fixed carbon) and operating parameters (gasifier temperature and air to fuel ratio). The architecture of the model consisted of one... 

    Extended artificial pheromone system for swarm robotic applications

    , Article Proceedings of the 2019 Conference on Artificial Life: How Can Artificial Life Help Solve Societal Challenges, ALIFE 2019, 29 July 2019 through 2 August 2019 ; 2020 , Pages 608-615 Na, S ; Raoufi, M ; Emre Turgut, A ; Krajnik, T ; Arvin, F ; Sharif University of Technology
    MIT Press  2020
    Abstract
    This paper proposes an artificial pheromone communication system inspired by social insects. The proposed model is an extension of the previously developed pheromone communication system, COS-Φ. The new model increases COS-Φ flexibility by adding two new features, namely, diffusion and advection. The proposed system consists of an LCD flat screen that is placed horizontally, overhead digital camera to track mobile robots, which move on the screen, and a computer, which simulates the pheromone behaviour and visualises its spatial distribution on the LCD. To investigate the feasibility of the proposed pheromone system, real micro-robots, Colias, were deployed which mimicked insects' role in... 

    Experimental examination of a natural vacuum desalination system integrated with evacuated tube collectors

    , Article Desalination ; Volume 467 , 2019 , Pages 79-85 ; 00119164 (ISSN) Abbaspour, M. J ; Faegh, M ; Shafii, M. B ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    A solar natural vacuum desalination system was experimentally investigated. Using a barometric water column and creating an equilibrium with atmospheric pressure and gravity, vacuum conditions were maintained inside the evaporation chamber throughout the day, which led to the beginning of evaporation at lower temperatures and as a result, lower energy consumption compared to conventional methods. Solar evacuated tubes were used to more efficiently absorb solar radiation and raise the temperature of saline water. In addition, at the system startup, a vacuum pump was utilized to fill the water column and create vacuum conditions. Then, the existing vacuum in the system was maintained naturally... 

    New approaches in lowering the gas-phase synthesis temperature of TiO2 nanoparticles by H2O-assisted atmospheric pressure CVS process

    , Article Journal of Materials Research and Technology ; Volume 8, Issue 3 , 2019 , Pages 3024-3035 ; 22387854 (ISSN) Rahiminezhad Soltani, M ; Saberyan, K ; Simchi, A ; Gammer, C ; Sharif University of Technology
    Elsevier Editora Ltda  2019
    Abstract
    H2O-assisted atmospheric pressure chemical vapor synthesis is a modern economical process for the gas-phase synthesis of TiO2 nanoparticles. In the present work, the influence of synthesis temperatures (100-800 °C) on the phase structure, nanoparticle size, morphology, and agglomeration is investigated by transmission electron microscopy, selected area electron diffraction, X-ray diffraction, thermogravimetry, and differential thermal analysis. Down to 400 °C, crystalline TiO2 nanoparticles are synthesized and at 200 °C amorphous nanoparticles are formed. Therefore, a decrease in minimum synthesis temperature by more than 500 °C is achieved. In addition, the paper investigates the hypothesis... 

    Nanorod carbon nitride as a carbo catalyst for selective oxidation of hydrogen sulfide to sulfur

    , Article Journal of Hazardous Materials ; Volume 364 , 2019 , Pages 218-226 ; 03043894 (ISSN) Kamali, F ; Eskandari, M. M ; Rashidi, A ; Baghalha, M ; Hassanisadi, M ; Hamzehlouyan, T ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Two-dimensional mesoporous carbon nitride and its highly efficient nanorod framework were prepared via hard-templating method. The obtained materials were fully characterized. The results showed that the samples structural ordering and morphology were similar to those of the parent silica templates; they had large pore volumes as well as high surface area structures. Carbon nitride carbocatalysts were used for H2S selective oxidation. The catalytic tests were carried out at 190, 210 and 230 °C in a fixed bed reactor. The obtained selectivity values for mesoporous carbon nitride rod and mesoporous carbon nitride toward elemental sulfur at 190 °C were 88.8% and 83%, respectively. Both samples... 

    Developing seedless growth of atomically thin semiconductor layers: Application to transition metal dichalcogenides

    , Article Ceramics International ; Volume 44, Issue 13 , 2018 , Pages 15795-15803 ; 02728842 (ISSN) Rahmani Taji Boyuk, M. R ; Sovizi, S ; Ghanbari, H ; Simchi, A ; Aboudzadeh, N ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Controlled growth of atomic monolayers of IV-VII transition metal dichalcogenides (TMDs) has provided unprecedented opportunities to fabricate modern optoelectronic nanodevices. However, synthesis of large-area and high quality two-dimensional TMDs is still challenging. We have synthesized WS2 and MoS2 nanosheets by atmospheric pressure chemical vapor deposition (APCVD) at wide-range of processing conditions. The nanostructures were analyzed by optical and confocal microscopy, atomic force microscopy, Raman spectroscopy, and X-ray diffraction to determine the thickness, lateral size and structure of the deposits. Through designing and performing of a set of controlled experiments as well as... 

    Experimental investigation and thermodynamic modeling of amino acids partitioning in a water/ionic liquid system

    , Article Journal of Molecular Liquids ; Volume 260 , 15 June , 2018 , Pages 386-390 ; 01677322 (ISSN) Nazem, H ; Ghotbi, C ; Habibi Zare, M ; Shirazian, S ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Amino acids partitioning including phenylalanine, glutamic acid, and tryptophan in aqueous and ionic liquid phases at temperature of 298.15 K and atmospheric pressure were measured. 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide used in this work can produce two phases with water immediately. The effect of aqueous solution pH on amino acids partitioning was studied and revealed that amino acid partitioning coefficient was decreased with increasing pH. This phenomenon pertains to the electrostatic interaction between cations of amino acid and the anions of ionic liquid which is decreased when pH increases. Considering the effect of pH, liquid-liquid equilibrium data of amino... 

    Integrated procedure, using differential evolution optimization of rate parameters, for design of small and accurate multistep global chemical mechanisms

    , Article Industrial and Engineering Chemistry Research ; Volume 57, Issue 10 , March , 2018 , Pages 3530-3544 ; 08885885 (ISSN) Shakeri, A ; Mazaheri, K ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    Three-dimensional analysis of combustion chambers in industrial gas turbines suffers from lack of simple and accurate reduced mechanisms for oxidation of hydrocarbon fuels. Here, an integrated procedure is introduced based on a differential evolution optimization technique. The procedure is flexible and modular and allows optimization of many rate parameters of a multistep global mechanism based on many different combustion criteria and inlet or operational conditions. The procedure uses any selected chemical reactor model and any reference combustion mechanism provided. Sample design criteria used here are flame temperature, ignition delay time, and concentration of selected species,... 

    Pool boiling heat transfer enhancement by twisted-tape fins

    , Article Applied Thermal Engineering ; Volume 135 , 2018 , Pages 170-177 ; 13594311 (ISSN) Ebrahimi Dehshali, M ; Najm Barzanji, Z ; Hakkaki Fard, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The boiling phenomena in a quiescent fluid is the nucleate pool boiling which has attracted much interest in the thermal management studies. This paper investigates the effect of the installed Twisted Tape Fins (TTFs) on the heat transfer from a surface with a temperature above the water saturation point to a coil condenser. Four different arrangements of TTFs (1, 3, 5, and 9 TTFs) are fabricated and their boiling performance in distilled water at atmospheric pressure is experimentally tested. It was observed that the increase in the boiling heat transfer coefficient of the plate with nine TTFs compared to that of the plain one is 15.5%. Furthermore, the effect of TTFs heights on the heat... 

    Vapor assisted deposition of alkaline doped perovskites: Pure phase formation of CsxMA1−xPbI3

    , Article Electrochimica Acta ; Volume 259 , 2018 , Pages 485-491 ; 00134686 (ISSN) Sedighi, R ; Tajabadi, F ; Taghavinia, N ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Alkaline doping (Cs, Rb) in CH3NH3PbI3 (MAPbI3) is known to enhance the stability of perovskite solar cells. The films are usually deposited using anti-solvent method, which is tricky and not applicable for large scale deposition. Besides, in case of CsxMA1−xPbI3 the amount of Cs must be carefully controlled to prevent CsI phase formation. Herein, we report an atmospheric pressure vapor assisted solution process (AP-VASP) for the growth of Cs doped MAPbI3 perovskite films that features highly uniform morphology, pin-hole free films, large grain size, as well as being scalable. The CsxMA1−xPbI3 films are formed by the reaction of Cs doped PbI2 films with MAI vapor in a simple oven. We... 

    Design and operation optimization of an internal reforming solid oxide fuel cell integrated system based on multi objective approach

    , Article Applied Thermal Engineering ; Volume 114 , 2017 , Pages 561-572 ; 13594311 (ISSN) Behzadi Forough, A ; Roshandel, R ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The interaction between design parameters and operation variables is a complex problem that affects system techno-economic performance. The aim of this paper is to optimize the design and operation of an SOFC/MGT integrated system. The problem consists of design and operation optimization of an integrated SOFC/MGT system. Decision variables including design parameters (number of SOFC cells) as well as the operation parameters (air pressure ratio, methane and air flow rates). The multi objective approach using genetic algorithm is applied considering two pairs of proposed objectives: (1) maximization of output power and minimization of the electricity cost and (2) maximization of system... 

    Improvement of the thermal cracking product quality of heavy vacuum residue using solvent deasphalting pretreatment

    , Article Energy and Fuels ; Volume 30, Issue 12 , 2016 , Pages 10322-10329 ; 08870624 (ISSN) Hamidi Zirasefi, M ; Khorasheh, F ; Ivakpour, J ; Mohammadzadeh, A ; Sharif University of Technology
    American Chemical Society  2016
    Abstract
    In this work we used the vacuum distillation residue from an Iranian heavy crude oil refinery in a solvent deasphalting (SDA) process using different temperatures (60-120°C), pressures (5-9 bar), solvents (n-pentane and ethyl acetate), and solvent to feed ratios (3 to 1, 5 to 1, and 7 to 1). The resulting products included deasphalted oil (DAO) and residue (PITCH). The DAO yields in SDA when n-pentane was used as solvent were significantly higher than those when ethyl acetate was used as solvent. The DAO was subsequently processed by thermal cracking at 500°C and atmospheric pressure to investigate the effect of solvent deasphalting processing conditions on the yield of coke and liquid...