Loading...
Search for: axial-load
0.007 seconds
Total 44 records

    Nonlinear finite element analysis and parametric study of executable RCS connections

    , Article Archives of Civil and Mechanical Engineering ; Volume 22, Issue 4 , 2022 ; 16449665 (ISSN) Bakhtiari Doost, R ; Sadraie, H ; Khaloo, A ; Badarloo, B ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    This paper compares the results of a nonlinear finite element analysis (FEA) of an internal hybrid steel beam to RC column connections with those of the experiment on a half-scale. This study used extended face bearing plates (EFBP) embedded in the panel zone (PZ) to make prefabricated RC column to steel beam connections (PRCS). Steel beam flanges were made to be stronger than scaled sections to transfer more force to the PZ. Nonlinear FEA was performed with ABAQUS software to evaluate the connections under unidirectional loading. Failure mode, connection stiffness, and PZ shear strength determined by nonlinear FEA matched well with the experimental findings. PRCS1 model was used to evaluate... 

    A model for inhomogeneous large deformation of photo-thermal sensitive hydrogels

    , Article Acta Mechanica ; Volume 232, Issue 8 , 2021 , Pages 2955-2972 ; 00015970 (ISSN) Mazaheri, H ; Namdar, A. H ; Ghasemkhani, A ; Sharif University of Technology
    Springer  2021
    Abstract
    The current study develops a 3D constitutive model for photo-thermal sensitive hydrogels based on free energy decomposition. The hydrogel under study is PNIPAM network with copper chlorophyllin nanoparticle agents attached to the network. The effect of light intensity is considered as a rise in temperature since chlorophyllin nanoparticle agents absorb light irradiation and convert it to heat. Moreover, it is necessary to consider the effect of dissociation of these agents on the hydrogel’s free energy function; therefore, a term is added to the free energy function. After introducing the model, some problems, including the free swelling and uniaxial loading problems, are studied, and the... 

    On the nonlinear dynamics of a multi-scale hybrid nanocomposite disk

    , Article Engineering with Computers ; Volume 37, Issue 3 , 2021 , Pages 2369-2388 ; 01770667 (ISSN) Safarpour, M ; Ebrahimi, F ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    This is the first research on the nonlinear frequency analysis of a multi-scale hybrid nanocomposite (MHC) disk (MHCD) resting on an elastic foundation subjected to nonlinear temperature gradient and mechanical loading is investigated. The matrix material is reinforced with carbon nanotubes (CNTs) or carbon fibers (CF) at the nano- or macroscale, respectively. We present a modified Halpin–Tsai model to predict the effective properties of the MHCD. The displacement–strain of nonlinear vibration of multi-scale laminated disk via third-order shear deformation theory (TSDT) and using Von Karman nonlinear shell theory is obtained. Hamilton’s principle is employed to establish the governing... 

    Axial load transfer analyses of energy piles at a rock site

    , Article Geotechnical and Geological Engineering ; Volume 38, Issue 5 , 4 May , 2020 , Pages 4711-4733 Moradshahi, A ; Khosravi, A ; McCartney, J. S ; Bouazza, A ; Sharif University of Technology
    Springer  2020
    Abstract
    An axial load-transfer analysis for energy piles is presented in this study that incorporates empirical models for estimating the side shear resistance and end bearing capacity in rock along with associated normalized stress-displacement curves. The analysis was calibrated using results from field experiments involving monotonic heating of three 15.2 m-long energy piles in sandstone. Analyses of the field experiments indicates that poor cleanout of the excavations led to an end restraint smaller than that expected for a clean excavation in sandstone. Specifically, end bearing parameters representative of cohesionless sand were necessary to match the load-transfer analysis to the field... 

    On the nonlinear dynamics of a multi-scale hybrid nanocomposite disk

    , Article Engineering with Computers ; 2020 Safarpour, M ; Ebrahimi, F ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    Springer  2020
    Abstract
    This is the first research on the nonlinear frequency analysis of a multi-scale hybrid nanocomposite (MHC) disk (MHCD) resting on an elastic foundation subjected to nonlinear temperature gradient and mechanical loading is investigated. The matrix material is reinforced with carbon nanotubes (CNTs) or carbon fibers (CF) at the nano- or macroscale, respectively. We present a modified Halpin–Tsai model to predict the effective properties of the MHCD. The displacement–strain of nonlinear vibration of multi-scale laminated disk via third-order shear deformation theory (TSDT) and using Von Karman nonlinear shell theory is obtained. Hamilton’s principle is employed to establish the governing... 

    On the nonlinear bending and post-buckling behavior of laminated sandwich cylindrical shells with FG or isogrid lattice cores

    , Article Acta Mechanica ; 2019 ; 00015970 (ISSN) Fallah, F ; Taati, E ; Sharif University of Technology
    Springer-Verlag Wien  2019
    Abstract
    The nonlinear governing equations of three shell theories (Donnell, Love, and Sanders) with first-order approximation and von Kármán’s geometric nonlinearity for laminated sandwich cylindrical shells with isotropic, functionally graded (FG) or isogrid lattice layers are decoupled. This uncoupling makes it possible to present a semi-analytical solution for the nonlinear bending and post-buckling behavior of short and long doubly simply supported, doubly clamped, and cantilever laminated sandwich cylindrical shells subjected to various types of thermo-mechanical loadings. The results for deflection, stress, critical axial traction, and mode shapes in FG shells are verified with those obtained... 

    On the nonlinear bending and post-buckling behavior of laminated sandwich cylindrical shells with FG or isogrid lattice cores

    , Article Acta Mechanica ; 2019 ; 00015970 (ISSN) Fallah, F ; Taati, E ; Sharif University of Technology
    Springer-Verlag Wien  2019
    Abstract
    The nonlinear governing equations of three shell theories (Donnell, Love, and Sanders) with first-order approximation and von Kármán’s geometric nonlinearity for laminated sandwich cylindrical shells with isotropic, functionally graded (FG) or isogrid lattice layers are decoupled. This uncoupling makes it possible to present a semi-analytical solution for the nonlinear bending and post-buckling behavior of short and long doubly simply supported, doubly clamped, and cantilever laminated sandwich cylindrical shells subjected to various types of thermo-mechanical loadings. The results for deflection, stress, critical axial traction, and mode shapes in FG shells are verified with those obtained... 

    A new approach for group efficiency of drilled shafts in sand subjected to axial loading

    , Article International Journal of Geotechnical Engineering ; Volume 12, Issue 2 , 2018 , Pages 172-184 ; 19386362 (ISSN) Ahmadi, M. M ; Mahvelati, S ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    Understanding pile group behaviour is a critical key for geotechnical engineers. Nevertheless, there have been inadequate studies in the literature which tackle the many aspects of this important type of foundation. In this paper, a new and simple approach is presented for estimating group efficiency of drilled shafts installed in sandy soil under axial loading. This approach may prove handy for geotechnical practitioners in their pile group design decisions. The distinguishing point about this approach is its being less-conservative in comparison with the rather few previous equations available in the literature. The mathematical approach derived in this study is based on results from... 

    Shear-compression tests of URM walls: various setups and their influence on experimental results

    , Article Engineering Structures ; Volume 156 , February , 2018 , Pages 472-479 ; 01410296 (ISSN) Wilding, B. V ; Dolatshahi, K. M ; Beyer, K ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Current design codes provide empirical equations for the drift capacity of unreinforced masonry (URM) walls that are based on results of quasi-static cyclic shear-compression tests. Yet different experimental campaigns have used various approaches of imposing fixed-fixed boundary conditions at the wall top which may affect the test results. This article investigates, by means of numerical simulations, the influence of experimental setups on the force and drift capacities of in-plane loaded URM walls subjected to double-fixed conditions. It is shown that controlling the shear span or the top rotation while keeping the axial force constant leads to very similar results. Controlling the axial... 

    Numerical study on factors that influence the in-plane drift capacity of unreinforced masonry walls

    , Article Earthquake Engineering and Structural Dynamics ; Volume 47, Issue 6 , 2018 , Pages 1440-1459 ; 00988847 (ISSN) Dolatshahi, K. M ; Nikoukalam, M. T ; Beyer, K ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    Displacement-based assessment procedures require as input reliable estimates of the deformation capacity of all structural elements. For unreinforced masonry (URM) walls, current design codes specify the in-plane deformation capacity as empirical equations of interstory drift. National codes differ with regard to the parameters that are considered in these empirical drift capacity equations, but the inhomogeneity of datasets on URM wall tests renders it difficult to validate the hypotheses with the currently available experimental data. This paper contributes to the future development of such empirical relationships by investigating the sensitivity of the drift capacity to the shear span,... 

    Stability analysis of a fractional viscoelastic plate strip in supersonic flow under axial loading

    , Article Meccanica ; Volume 52, Issue 7 , 2017 , Pages 1495-1502 ; 00256455 (ISSN) Asgari, M ; Permoon, M. R ; Haddadpour, H ; Sharif University of Technology
    Springer Netherlands  2017
    Abstract
    The stability of a viscoelastic plate strip, subjected to an axial load with the Kelvin–Voigt fractional order constitutive relationship is studied. Based on the classical plate theory, the structural formulation of the plate is obtained by using the Newton’s second law and the aerodynamic force due to the fluid flow is evaluated by piston theory. The Galerkin method is employed to discretize the equation of motion into a set of ordinary differential equations. To determine the stability margin of plate the obtained set of ordinary differential equations are solved using the Laplace transform method. The effects of variation of the governing parameters such as axial force, retardation time,... 

    Shock wave sintering of Al/SiC metal matrix nano-composites: A molecular dynamics study

    , Article Computational Materials Science ; Volume 125 , 2016 , Pages 255-262 ; 09270256 (ISSN) Tavakol, M ; Mahnama, M ; Naghdabadi, R ; Sharif University of Technology
    Elsevier  2016
    Abstract
    Mechanical properties of nano-composites produced by shock wave sintering of aluminum and silicon carbide nano-powders are investigated using Molecular Dynamics (MD) simulations. In this regard, the shock wave response of aluminum and silicon carbide nano-particles, arranged in a BCC super-lattice, is studied via the NPHug Hugoniostat method. Moreover, the effect of the initial hydrostatic compaction of powders as well as the cooling rate of the shocked material on the mechanical properties of the shock-sintered nano-composites is investigated. Employing the Hugoniot curves corresponding to the powders, it is concluded that an initial hydrostatic pressure, leads to a less temperature rise... 

    A new approach for group efficiency of drilled shafts in sand subjected to axial loading

    , Article International Journal of Geotechnical Engineering ; 2016 , Pages 1-13 ; 19386362 (ISSN) Ahmadi, M. M ; Mahvelati, S ; Sharif University of Technology
    Taylor and Francis Ltd  2016
    Abstract
    Understanding pile group behaviour is a critical key for geotechnical engineers. Nevertheless, there have been inadequate studies in the literature which tackle the many aspects of this important type of foundation. In this paper, a new and simple approach is presented for estimating group efficiency of drilled shafts installed in sandy soil under axial loading. This approach may prove handy for geotechnical practitioners in their pile group design decisions. The distinguishing point about this approach is its being less-conservative in comparison with the rather few previous equations available in the literature. The mathematical approach derived in this study is based on results from... 

    A three-dimensional phenomenological constitutive model for porous shape memory alloys including plasticity effects

    , Article Journal of Intelligent Material Systems and Structures ; Volume 27, Issue 5 , 2016 , Pages 608-624 ; 1045389X (ISSN) Ashrafi, M. J ; Arghavani, J ; Naghdabadi, R ; Auricchio, F ; Sharif University of Technology
    SAGE Publications Ltd  2016
    Abstract
    Porous shape memory alloys are a class of very interesting materials exhibiting features typical of porous metals and of shape memory alloys. In contrast to dense shape memory alloys, considerable plastic strain accumulates in porous shape memory alloys even during phase transformation. Moreover, due to the microstructure of porous materials, phase transformation and plasticity phenomena are significantly pressure-dependent. In this article, we propose a three-dimensional phenomenological constitutive model for the thermomechanical behavior of porous shape memory alloys able to predict shape memory effect, pseudo-elastic behavior and plastic behavior under proportional as well as... 

    Finite strain numerical analysis of elastomeric bushings under multi-axial loadings: A compressible visco-hyperelastic approach

    , Article International Journal of Mechanics and Materials in Design ; Volume 9, Issue 4 , December , 2013 , Pages 385-399 ; 15691713 (ISSN) Khajehsaeid, H ; Baghani, M ; Naghdabadi, R ; Sharif University of Technology
    2013
    Abstract
    Elastomers have wide and ever increasing applications in several industries. In this work a compressible visco-hyperelastic approach is employed to investigate the behavior of elastomeric materials. The time-discrete form of the material model is developed to be used in numerical simulations. This formulation provides a recursive relation to update the stress in any time step regarding the deformation history. By means of analytical solutions derived for pure torsion of a solid circular cylinder, the numerical implementation is validated and then, the response of an elastomeric bushing is investigated in torsional, axial and combined deformations. These bushings are used in suspension... 

    On free vibration of functionally graded euler-bernoulli beam models based on the non-local theory

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 12 , 2012 , Pages 169-173 ; 9780791845288 (ISBN) Moheimani, R ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    In this paper, the governing equations and boundary conditions of a functionally graded Euler-Bernoulli beam are developed based on the non-local theory of elasticity. Afterward, the free vibration is investigated and the effects of the axial load, the non-local parameter and the power index on the natural frequency of a hinged-hinged beam is assessed. The results indicate that the non-local parameter has a decreasing effect on the frequency while the power index has an increasing effect. It is also noted that the effect of the axial load is increasing too  

    Dynamic analysis of a simply supported beam resting on a nonlinear elastic foundation under compressive axial load using nonlinear normal modes techniques under three-to-one internal resonance condition

    , Article Nonlinear Dynamics ; Volume 70, Issue 2 , October , 2012 , Pages 1147-1172 ; 0924090X (ISSN) Mamandi, A ; Kargarnovin, M. H ; Farsi, S ; Sharif University of Technology
    Springer  2012
    Abstract
    In this paper, the Nonlinear Normal Modes (NNMs) analysis for the case of three-to-one (3:1) internal resonance of a slender simply supported beam in presence of compressive axial load resting on a nonlinear elastic foundation is studied. Using the Euler- Bernoulli beam model, the governing nonlinear PDE of the beam's transverse vibration and also its associated boundary conditions are extracted. These nonlinear motion equation and boundary condition relations are solved simultaneously using four different approximate-analytical solution techniques, namely the method of Multiple Time Scales, the method of Normal Forms, the method of Shaw and Pierre, and the method of King and Vakakis. The... 

    Optimization of geometric parameters of latticed structures using genetic algorithm

    , Article Aircraft Engineering and Aerospace Technology ; Volume 83, Issue 2 , 2011 , Pages 59-68 ; 00022667 (ISSN) Hashemian, A. H ; Kargarnovin, M. H ; Jam, J. E ; Sharif University of Technology
    2011
    Abstract
    Purpose - The purpose of this paper is to analyze a squared lattice cylindrical shell under compressive axial load and to optimize the geometric parameters to achieve the maximum buckling load. Also a comparison between buckling loads of a squared lattice cylinder and a solid hollow cylinder with equal weight, length and outer diameter is performed to reveal the superior performance of the squared lattice cylindrical shells. Design/methodology/ approach - A cylindrical lattice shell includes circumferential and longitudinal rods with geometric parameters such as crosssection areas of the rods, distances and angles between them. In this study, the governing differential equation for buckling... 

    Nonlinear vibration and buckling analysis of beams using homotopy perturbation method

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010, Vancouver, BC ; Volume 10 , 2010 , Pages 463-469 ; 9780791844472 (ISBN) Mojahedi, M ; Moeenfard, H ; Ahmadian, M. T ; Sharif University of Technology
    2010
    Abstract
    In this paper, homotopy perturbation and modified Lindstedt-Poincare methods are employed for nonlinear free vibrational and buckling analysis of simply supported and double-clamped beams subjected to axial loads. Mid-plane stretching effect has also been accounted in the model. Galerkin's decomposition technique is implemented to convert the dimensionless equation of the motion to nonlinear ordinary differential equation. Homotopy and modified Lindstedt-Poincare (HPM) are applied to find analytic expressions for nonlinear natural frequencies and critical axial loads of the beams. Effects of design parameters such as axial load and slenderness ratio are investigated. The analytic expressions... 

    A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings

    , Article International Journal of Plasticity ; Volume 26, Issue 7 , July , 2010 , Pages 976-991 ; 07496419 (ISSN) Arghavani, J ; Auricchio, F ; Naghdabadi, R ; Reali, A ; Sohrabpour, S ; Sharif University of Technology
    2010
    Abstract
    This paper presents a new phenomenological constitutive model for shape memory alloys, developed within the framework of irreversible thermodynamics and based on a scalar and a tensorial internal variable. In particular, the model uses a measure of the amount of stress-induced martensite as scalar internal variable and the preferred direction of variants as independent tensorial internal variable. Using this approach, it is possible to account for variant reorientation and for the effects of multiaxial non-proportional loadings in a more accurate form than previously done. In particular, we propose a model that has the property of completely decoupling the pure reorientation mechanism from...