Loading...
Search for: beams-and-girders
0.013 seconds
Total 213 records

    Sandwich beam model for free vibration analysis of bilayer graphene nanoribbons with interlayer shear effect

    , Article Journal of Applied Physics ; Vol. 115, issue. 17 , May , 2014 ; ISSN: 00218979 Nazemnezhad, R ; Shokrollahi, H ; Hosseini-Hashemi, S ; Sharif University of Technology
    Abstract
    In this study, sandwich beam model (SM) is proposed for free vibration analysis of bilayer graphene nanoribbons (BLGNRs) with interlayer shear effect. This model also takes into account the intralayer (in-plane) stretch of graphene nanoribbons. The molecular dynamics (MD) simulations using the software LAMMPS and Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential are done to validate the accuracy of the sandwich model results. The MD simulation results include the two first frequencies of cantilever BLGNRs with different lengths and two interlayer shear moduli, i.e., 0.25 and 4.6GPa. These two interlayer shear moduli, 0.25 and 4.6GPa, can be obtained by sliding a small... 

    Nonlinear seismic assessment of steel moment frames under bidirectional loading via endurance time method

    , Article Structural Design of Tall and Special Buildings ; Vol. 23, issue. 6 , April , 2014 , p. 442-462 ; ISSN: 15417794 Valamanesh, V ; Estekanchi, H. E ; Sharif University of Technology
    Abstract
    In this paper, considering horizontal components of seismic excitation, an algorithm for the nonlinear multi-component analysis of building structures by the Endurance Time (ET) method is proposed, and results of the ET method for various steel moment frames with one to seven stories are verified by comparing with the results from Nonlinear Time History Analysis with use of two different sets of ground motions. In addition, several parameters such as eccentricities and irregularities in structure, rotational and lateral stiffness, effect of hysteresis type and ductility have been considered for sensitivity analysis on results, obtained by ET method. Results show that on the basis of... 

    Axial-torsional vibrations of rotating pretwisted thin walled composite beams

    , Article International Journal of Mechanical Sciences ; Vol. 80 , 2014 , pp. 93-101 ; ISSN: 00207403 Sina, S. A ; Haddadpour, H ; Sharif University of Technology
    Abstract
    Axial-torsional vibrations of rotating pretwisted thin-walled composite box beams exhibiting primary and secondary warping are investigated. Considering the nonlinear strain-displacement relations, the coupled nonlinear axial-torsional equations of motion are derived using Hamilton's principle. Ignoring the axial inertia term leads to differential equation of motion in terms of elastic torsion in the case of axially immovable beams. Centrifugal load in the presence of material anisotropy and pretwist angle leads to an induced static torque. The nonlinear equation should be linearized about the corresponding equilibrium state to obtain the linear differential equation of motion. Extended... 

    Hardware-in-the-loop optimization of an active vibration controller in a flexible beam structure using evolutionary algorithms

    , Article Journal of Intelligent Material Systems and Structures ; Vol. 25, issue. 10 , 2014 , p. 1211-1223 Nobahari, H ; Hosseini Kordkheili, S. A ; Afshari, S. S ; Sharif University of Technology
    Abstract
    In this study, active vibration control of a cantilevered flexible beam structure equipped with bonded piezoelectric sensor/actuators is investigated. The linear quadratic regulator technique together with an observer is adopted to design the controller as well as to provide the full-state feedback. Two different approaches are subsequently used for simultaneously integrated optimization of the controller and observer parameters. In the first approach, a linear experimental model of the system is obtained using identification techniques, and the optimization is then performed based on a computer simulation of the system. However, in the second approach, a hardware-in-the-loop optimization... 

    Nonlinear behavior of functionally graded circular plates with various boundary supports under asymmetric thermo-mechanical loading

    , Article Composite Structures ; Volume 94, Issue 9 , 2012 , Pages 2834-2850 ; 02638223 (ISSN) Fallah, F ; Nosier, A ; Sharif University of Technology
    Abstract
    The equilibrium equations of the first-order nonlinear von Karman theory for FG circular plates under asymmetric transverse loading and heat conduction through the plate thickness are reformulated into those describing the interior and edge-zone problems of the plate. A two parameter perturbation technique, in conjunction with Fourier series method is used to obtain analytical solutions for nonlinear behavior of functionally graded circular plates with various clamped and simply-supported boundary conditions. The material properties are graded through the plate thickness according to a power-law distribution of the volume fraction of the constituents. The results are verified with known... 

    Forced vibration of delaminated Timoshenko beams subjected to a moving load

    , Article Science and Engineering of Composite Materials ; Volume 19, Issue 2 , June , 2012 , Pages 145-157 ; 0334181X (ISSN) Kargarnovin, M. H ; Ahmadian, M. T ; Jafari-Talookolaeia, R. A ; Sharif University of Technology
    Abstract
    A composite beam with single delamination under the action of moving load has been modeled accounting for the Poisson's effect, shear deformation, and rotary inertia. The existence of the delamination changes the stiffness of the structure, and this affects the dynamic response of the structure. We have used a constrained mode to simulate the behavior between the delaminated surfaces. Based on this mode, eigensolution technique is used to obtain the natural frequencies and their corresponding mode shapes for the delaminated beam. Then, the Ritz method is adopted to derive the dynamic response of the beam subjected to a moving load. The obtained results for the free and forced vibrations of... 

    Two-dimensional modeling of functionally graded viscoelastic materials using a boundary element approach

    , Article Advanced Materials Research, 7 January 2012 through 8 January 2012 ; Volume 463-464 , January , 2012 , Pages 570-574 ; 10226680 (ISSN) ; 9783037853634 (ISBN) Ashrafi, H ; Bahadori, M. R ; Shariyat, M ; Sharif University of Technology
    Abstract
    In this paper, a 2D boundary element approach able to model viscoelastic functionally graded materials (FGM) is presented. A numerical implementation of the Somigliana identity for displacements is developed to solve 2D problems of exponentially graded elasticity. An FGM is an advanced material in which its composition changes gradually resulting in a corresponding change in properties of the material. The FGM concept can be applied to various materials for structural and functional uses. Our model needs only the Green's function of nonhomogeneous elastostatic problems with material properties that vary continuously along a given dimension. We consider the material properties to be an... 

    Buckling analysis of multilayered functionally graded composite cylindrical shells

    , Article Applied Mechanics and Materials ; Volume 108 , 2012 , Pages 74-79 ; 16609336 (ISSN) ; 9783037852729 (ISBN) Kargarnovin, M. H ; Hashemi, M ; Sharif University of Technology
    Abstract
    In this paper, the buckling analysis of a multilayered composite cylindrical shell which volume fraction of its fiber varies according to power law in longitudinal direction, due to applied compressive axial load is studied. Rule of mixture model and reverse of that are employed to represent elastic properties of this fiber reinforced functionally graded composite. Strain displacement relations employed are based on Reissner-Naghdi-Berry's shell theory. The displacement finite element model of the equilibrium equations is derived by employing weak form formulation. The Lagrangian shape function for in-plane displacements and Hermitian shape function for displacement in normal direction to... 

    Dynamic analysis of a delaminated composite beam due to a moving oscillatory mass

    , Article ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011, 11 November 2011 through 17 November 2011 ; Volume 7, Issue PARTS A AND B , November , 2011 , Pages 863-870 ; 9780791854938 (ISBN) Ahmadian, M. T ; Kargarnovin, M. H ; Jafari Talookolaei, R. A ; Sharif University of Technology
    Abstract
    This paper deals with the dynamic analysis of a delaminated composite beam under the action of moving oscillatory mass. The beam is analyzed as four interconnected sub-beams using the delamination limits as their boundaries. The constrained model is used to model the delamination region. The continuity and equilibrium conditions are satisfied between the adjoining beams. The beam response variation due to the delamination with respect to the intact beam has been investigated. Furthermore, the possible separation of the moving oscillator from the beam during the course of the motion is investigated by monitoring the contact force between the oscillator and the beam. The effect of the... 

    Multi-objective optimization of functionally graded hollow cylinders

    , Article ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011 ; Volume 8 , 2011 , Pages 583-590 ; 9780791854945 (ISBN) Nabian, M ; Ahmadian, M. T ; ASME ; Sharif University of Technology
    Abstract
    In this study, two physical properties of simply supported hollow cylinders made of functionally graded materials are investigated. These two properties are mass and first natural frequency which is desirable to be minimized and maximized respectively in mechanical applications. The functionally graded material properties are assumed to vary continuously through the thickness of the cylinder. In this multi-objective optimization problem the first natural frequency of the FGM cylinders as well as its mass are formulated in terms of the volume fraction of the constituents, then by using Genetic algorithm optimization method the continuous volume fraction function of the constituents has been... 

    Semi-exact elastic solutions for thermo-mechanical analysis of functionally graded rotating disks

    , Article Composite Structures ; Volume 93, Issue 12 , 2011 , Pages 3239-3251 ; 02638223 (ISSN) Hassani, A ; Hojjati, M. H ; Farrahi, G ; Alashti, R. A ; Sharif University of Technology
    Abstract
    In this paper, distributions of stress and strain components of rotating disks with non-uniform thickness and material properties subjected to thermo-elastic loading under different boundary conditions are obtained by semi-exact methods of Liao's homotopy analysis method (HAM), Adomian's decomposition method and He's variational iteration method (VIM). The materials are assumed to be perfectly elastic and isotropic. A two dimensional plane stress analysis is used. The distribution of temperature over the disk radius is assumed to have power forms with the higher temperature at the outer surface. The results of the three methods are compared with those obtained by Runge-Kutta's numerical... 

    Anti-plane stress intensity, energy release and energy density at crack tips in a functionally graded strip with linearly varying properties

    , Article Theoretical and Applied Fracture Mechanics ; Volume 56, Issue 1 , 2011 , Pages 42-48 ; 01678442 (ISSN) Kargarnovin, M. H ; Nasirai, C ; Torshizian, M. R ; Sharif University of Technology
    Abstract
    The fracture problem of a crack in a functionally graded strip with its properties varying in a linear form along the strip thickness under an anti-plane load is considered. The embedded anti-plane crack is located in the middle of strip half way through the thickness. The third mode stress intensity factor is derived using two different methods. In the first method, by employing Fourier integral transforms, the governing equation is converted to a singular integral equation, which is subsequently solved numerically by the collocation method based on Chebyshev polynomials. Then, the problem is solved by means of finite element method in which quadrilateral 8-node singular elements around... 

    Endurance time method for multi-component analysis of steel elastic moment frames

    , Article Scientia Iranica ; Volume 18, Issue 2 A , 2011 , Pages 139-149 ; 10263098 (ISSN) Valamanesh, V ; Estekanchi, H. E ; Sharif University of Technology
    Abstract
    The Endurance Time (ET) method is a time history-based dynamic analysis procedure which uses special intensifying acceleration functions for evaluation of the seismic response of structures. One of the potential applications of the ET method is in the three-dimensional analysis of buildings under multidirectional excitations. In this paper, considering horizontal components of excitation, an algorithm for the multi-component analysis of building structures by the ET method is proposed, and results of the ET method for various steel moment frames with 1 to 7 stories are compared with results from time history analysis with real earthquakes. Results show that based on recommendations of... 

    The modified couple stress functionally graded Timoshenko beam formulation

    , Article Materials and Design ; Volume 32, Issue 3 , 2011 , Pages 1435-1443 ; 02641275 (ISSN) Asghari, M ; Rahaeifard, M ; Kahrobaiyan, M. H ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    In this paper, a size-dependent formulation is presented for Timoshenko beams made of a functionally graded material (FGM). The formulation is developed on the basis of the modified couple stress theory. The modified couple stress theory is a non-classic continuum theory capable to capture the small-scale size effects in the mechanical behavior of structures. The beam properties are assumed to vary through the thickness of the beam. The governing differential equations of motion are derived for the proposed modified couple-stress FG Timoshenko beam. The generally valid closed-form analytic expressions are obtained for the static response parameters. As case studies, the static and free... 

    Temperature and thickness effects on thermal and mechanical stresses of rotating FG-disks

    , Article Journal of Mechanical Science and Technology ; Volume 25, Issue 3 , 2011 , Pages 827-836 ; 1738494X (ISSN) Damircheli, M ; Azadi, M ; Sharif University of Technology
    Abstract
    In the present paper, radial and hoop thermal and mechanical stress analysis of a rotating disk made of functionally graded material (FGM) with variable thickness is carried out by using finite element method (FEM). To model the disk by FEM, one-dimensional two-degree elements with three nodes are used. It is assumed that the material properties, such as elastic modulus, Poisson's ratio and thermal expansion coefficient, are considered to vary using a power law function in the radial direction. The geometrical and boundary conditions are in the shape of two models including thermal stress (model-A) and mechanical stress (model-B). In model-A there exists no pressure in both external and... 

    Curvilinear fiber optimization tools for design thin walled beams

    , Article Thin-Walled Structures ; Volume 49, Issue 3 , 2011 , Pages 448-454 ; 02638231 (ISSN) Zamani, Z ; Haddadpour, H ; Ghazavi, M. R ; Sharif University of Technology
    Abstract
    An investigation of the possible performance improvements of thin walled composite beams through the use of the variable stiffness concept with curvilinear fiber is presented. The beams are constructed from a single-cell closed cross section and a number of non-classical effects such as material anisotropy, transverse shear, warping inhibition and nonuniform torsional model are considered in the beam model. The governing equations were derived by means of the extended Hamilton's principle. Also the extended Galerkin's method is used to solve governing equations. Composite beams subjected to different loading with given geometry and material properties are optimized for maximum failure load.... 

    Large amplitudes free vibrations and post-buckling analysis of unsymmetrically laminated composite beams on nonlinear elastic foundation

    , Article Applied Mathematical Modelling ; Volume 35, Issue 1 , 2011 , Pages 130-138 ; 0307904X (ISSN) Baghani, M ; Jafari Talookolaei, R. A ; Salarieh, H ; Sharif University of Technology
    Abstract
    The purpose of this paper is to present efficient and accurate analytical expressions for large amplitude free vibration and post-buckling analysis of unsymmetrically laminated composite beams on elastic foundation. Geometric nonlinearity is considered using Von Karman's strain-displacement relations. Besides, the elastic foundation has cubic nonlinearity with shearing layer. The nonlinear governing equation is solved by employing the variational iteration method (VIM). This study shows that the third-order approximation of the VIM leads to highly accurate solutions which are valid for a wide range of vibration amplitudes. The effects of different parameters on the ratio of nonlinear to... 

    Assessment of the semi-rigid double-angle steel connections and parametric analyses on their initial stiness using FEM

    , Article Scientia Iranica ; Volume 22, Issue 6 , 2015 , Pages 2033-2045 ; 10263098 (ISSN) Esfahanian, A ; Mohamadi Shooreh, M. R ; Mod, M ; Sharif University of Technology
    Abstract
    In this paper, the semi-rigid connections, such as Double-angle Web (DW) connections, which are welded to the beam web and bolted to the column ange, are investigated. This study tries to establish the eect of clearance setback between beam end and column ange and/or web. When the beam rotates, it is desirable to avoid bottom ange of the beam bearing against the column as this can induce large forces on the connection. The usual way of achieving this is to ensure that the connection extends at least a few millimeters beyond the end of beam. For this purpose, several connections are designed and considered based on two dierent shear capacities for the beam. For each connection, two dierent... 

    Study of shape memory effect in NiMnGa Magnetic Shape Memory Alloy single crystals by incremental modeling

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010 ; Volume 1 , 2010 , Pages 441-446 ; 9780791849156 (ISBN) Khajehsaeid, H ; Naghdabadi, R ; Sohrabpour, S ; Sharif University of Technology
    Abstract
    Magnetic Shape Memory Alloys (MSMAs) are a category of active materials which can be excited by magnetic field. These alloys have been used in sensor and actuator applications recently. MSMAs possess special properties such as large magnetic field-induced strains (up to %10) and high actuation frequency (about 1kHz), while ordinary shape memory alloys can't act in frequencies above 5Hz due to the time involved with heat transformation. In this paper, MSMAs are modeled by an incremental modeling approach which utilizes different secant moduli for different parts of stress-strain curve. Furthermore, stress-strain curve of MSMAs is approximated using an analytical expression. The incremental... 

    Flexural sensitivity of a V-shaped AFM cantilever made of functionally graded materials

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010 ; Volume 1 , 2010 , Pages 495-501 ; 9780791849156 (ISBN) Rahaeifard, M ; Kahrobaiyan, M. H ; Moeini, S. A ; Ahmadian, M. T ; Hoviattalab, M ; Sharif University of Technology
    Abstract
    In this paper, two lowest resonant frequencies and sensitivities of an AFM V-Shaped microcantilever made of functionally graded materials are studied. The beam is modeled by Euler-Bernoulli beam theory in which rotary inertia and shear deformation is neglected. It is assumed that the beam is made of a mixture of metal and ceramic with properties varying through the thickness of the beam. This variation is function of volume fraction of beam material constituents. The interaction between AFM tip and surface is modeled by two linear springs which expresses the normal and lateral contact stiffness. A relationship is developed to evaluate the sensitivity of FGM micro cantilever beam. Effect of...