Loading...
Search for: beams-and-girders
0.013 seconds
Total 213 records

    Cyclic behaviour of interior reinforced concrete beam-column connection with self-consolidating concrete

    , Article Structural Concrete ; Volume 17, Issue 4 , 2016 , Pages 618-629 ; 14644177 (ISSN) Salehi Mobin, J ; Kazemi, M. T ; Attari, N. K. A ; Sharif University of Technology
    Wiley-Blackwell 
    Abstract
    A significant amount of research on self-consolidating concrete (SCC) technology has been devoted to evaluating the suitability of the material for its use in structural applications. However, more research is required to confirm the adequacy of SCC structural members for resisting gravity and seismic loads. This study focuses on the experimental investigation of the seismic performance of interior reinforced concrete beam-column connections with SCC. Four beam-column connection specimens, three with SCC and one with normally vibrated concrete (NC), were designed for this experimental study. Factors such as concrete type (SCC or NC) and axial load ratio (0, 7.5 and 15 % of column section... 

    Dynamics of a generally layered composite beam with single delamination based on the shear deformation theory

    , Article Science and Engineering of Composite Materials ; Volume 22, Issue 1 , 2015 , Pages 57-70 ; 0334181X (ISSN) Jafari Talookolaei, R. A ; Abedi, M ; Kargarnovin, M. H ; Ahmadian, M. T ; Sharif University of Technology
    Walter de Gruyter GmbH  2015
    Abstract
    The free vibration analysis of generally laminated composite beam (LCB) with a delamination is presented using the finite element method (FEM). The effect of material couplings (bending-tension, bending-twist, and tension-twist couplings) with the effects of shear deformation, rotary inertia, and Poisson's effect are taken into account. To verify the validity and the accuracy of this study, the numerical solutions are presented and compared with the results from available references and very good agreement observed. Furthermore, the effects of some parameters such as slenderness ratio, the rotary inertia, the shear deformation, material anisotropy, ply configuration, and delamination... 

    Vibration analysis of spinning cylindrical shell made of functionally graded material using higher order shear deformation theory

    , Article 7th European Conference on Structural Dynamics, EURODYN 2008, 7 July 2008 through 9 July 2008 ; 2008 ; 9780854328826 (ISBN) Kargarnovin, M. H ; Mehrparvar, M ; Najafizadeh, A ; Sharif University of Technology
    University of Southampton, Institute of Sound Vibration and Research  2008
    Abstract
    In this paper the vibration of a spinning cylindrical shell made of functional graded material (FGM) made is investigated. After a brief introduction of FG materials, by employing higher order theory for shell deformation, constitutive relationships are derived. In the next step by utilizing energy method and Hamilton's principle governing deferential equation of spinning cylindrical shell is obtained. By making use of the principle of minimum potential energy, the characteristic equation of natural frequencies is derived. After verification of the results, the effect of changing different parameters such as material grade, L/R, h/R, and spinning velocity on the natural frequency are... 

    Nonlinear behavior of connections in RCS frames with bracing and steel plate shear wall

    , Article Steel and Composite Structures ; Volume 22, Issue 4 , 2016 , Pages 915-935 ; 12299367 (ISSN) Ghods, S ; Kheyroddin, A ; Nazeryan, M ; Mirtaheri, S. M ; Gholhaki, M ; Sharif University of Technology
    Techno Press  2016
    Abstract
    Steel systems composed of Reinforced Concrete column to Steel beam connection (RCS) have been raised as a structural system in the past few years. The optimized combination of steel-concrete structural elements has the advantages of both systems. Through beam and through column connections are two main categories in RCS systems. This study includes finite-element analyses of mentioned connection to investigate the seismic performance of RCS connections. The finite element model using ABAQUS software has been verified with experimental results of a through beam type connection tested in Taiwan in 2005. According to verified finite element model a parametric study has been carried out on five... 

    Numerical study of steel box girder bridge diaphragms

    , Article Earthquake and Structures ; Volume 11, Issue 4 , 2016 , Pages 681-699 ; 20927614 (ISSN) Maleki, S ; Mohammadinia, P ; Dolati, A ; Sharif University of Technology
    Techno Press  2016
    Abstract
    Steel box girders have two webs and two flanges on top that are usually connected with shear connectors to the concrete deck and are also known as tub girders. The end diaphragms of such bridges comprise of a stiffened steel plate welded to the inside of the girder at each end. The diaphragms play a major role in transferring vertical and lateral loads to the bearings and substructure. A review of literature shows that the cyclic behavior of diaphragms under earthquake loading has not been studied previously. This paper uses a nonlinear finite element model to study the behavior of the end diaphragms under gravity and seismic loads. Different bearing device and stiffener configurations have... 

    Investigation of pipe shear connectors using push out test

    , Article Steel and Composite Structures ; Volume 27, Issue 5 , 10 June , 2018 , Pages 537-543 ; 12299367 (ISSN) Nasrollahi, S ; Maleki, S ; Shariati, M ; Marto, A ; Khorami, M ; Sharif University of Technology
    Techno Press  2018
    Abstract
    Mechanical shear connectors are commonly used to transfer longitudinal shear forces across the steel-concrete interface in composite beams. Steel pipe as a new shear connector is proposed in this research and its performance to achieve composite strength is investigated. Experimental monotonic push-out tests were carried out for this connector. Then, a nonlinear finite element model of the push-out specimens is developed and verified against test results. Further, the finite element model is used to investigate the effects of pipe thickness, length and diameter on the shear strength of the connectors. The ultimate strengths of these connectors are reported and their respective failure modes... 

    Monotonic behavior of C and L shaped angle shear connectors within steel-concrete composite beams: An experimental investigation

    , Article Steel and Composite Structures ; Volume 35, Issue 2 , 2020 , Pages 237-247 Shariati, M ; Tahmasbi, F ; Mehrabi, P ; Bahadori, A ; Toghroli, A ; Sharif University of Technology
    Techno Press  2020
    Abstract
    Shear connectors are essential elements in the design of steel-concrete composite systems. These connectors are utilized to prevent the occurrence of potential slips at the interface of steel and concrete. The two types of shear connectors which have been recently employed in construction projects are C- and L-shaped connectors. In the current study, the behavior of C and L-shaped angle shear connectors is investigated experimentally. For this purpose, eight push-out tests were composed and subjected to monotonic loading. The load-slip curves and failure modes have been determined. Also, the shear strength of the connectors has been compared with previously developed relationships. Two... 

    Seismic shear strengthening of R/C beams and columns with expanded steel meshes

    , Article Structural Engineering and Mechanics ; Volume 21, Issue 3 , 2005 , Pages 333-350 ; 12254568 (ISSN) Morshedt, R ; Kazemi, M. T ; Sharif University of Technology
    Techno-Press  2005
    Abstract
    This paper presents results of an experimental study to evaluate a new retrofit technique for strengthening shear deficient short concrete beams and columns. In this technique a mortar jacket reinforced with expanded steel meshes is used for retrofitting. Twelve short reinforced concrete specimens, including eight retrofitted ones, were tested. Six specimens were tested under a constant compressive axial force of 15% of column axial load capacity based on original concrete gross section, Ag, and the concrete compressive strength, fc′. Main variables were the spacing of ties in original specimens and the volume fraction of expanded metal in jackets. Original specimens failed before reaching... 

    Theoretical analysis of rotary hyperelastic variable thickness disk made of functionally graded materials

    , Article Structural Engineering and Mechanics ; Volume 45, Issue 1 , 2022 , Pages 39-49 ; 12254568 (ISSN) Soleimani, A ; Mahdavi Adeli, M ; Zamani, F ; Haghshenas Gorgani, H ; Sharif University of Technology
    Techno-Press  2022
    Abstract
    This research investigates a rotary disk with variable cross-section and incompressible hyperelastic material with functionally graded properties in large hyperelastic deformations. For this purpose, a power relation has been used to express the changes in cross-section and properties of hyperelastic material. So that (m) represents the changes in cross-section and (n) represents the manner of changes in material properties. The constants used for hyperelastic material have been obtained from experimental data. The obtained equations have been solved for different m, n, and (angular velocity) values, and the values of radial stresses, tangential stresses, and elongation have been compared.... 

    Experimental and numerical investigation of low-temperature performance of modified asphalt binders and mixtures

    , Article Road Materials and Pavement Design ; 2016 , Pages 1-22 ; 14680629 (ISSN) Jahanbakhsh, H ; Karimi, M. M ; Tabatabaee, N ; Sharif University of Technology
    Taylor and Francis Ltd  2016
    Abstract
    Thermal cracking is the prevalent type of distress experienced by asphalt pavements in cold regions. It is widely assumed that when thermal stresses induced in the pavement exceed the tensile strength of the asphalt surface layer, cracking occurs; however, the role of thermal fatigue should not be ignored. To better describe the low-temperature (LT) performance properties of modified asphalt binders, a new parameter, normalised tensile stress (NTS), was defined in this research. NTS values were compared with bending beam rheometer (BBR), direct tension (DT) and semi-circular bending (SCB) fracture test results. The m-value parameter of the BBR test specifies the type of asphalt binder. This... 

    Free vibrations of functionally graded material cylindrical shell closed with two spherical caps

    , Article Ships and Offshore Structures ; 2021 ; 17445302 (ISSN) Bagheri, H ; Kiani, Y ; Bagheri, N ; Eslami, M. R ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    Free vibration response of a cylindrical shell closed with two hemispherical caps at the ends (hermit capsule) is analysed in this research. It is assumed that the system of joined shell is made from functionally graded materials (FGM). Properties of the shells are assumed to be graded through the thickness. Cylindrical and hemispherical shells are unified in thickness. To capture the effects of through-the-thickness shear deformations and rotary inertias, first order theory of shells is used. Donnell type of kinematic assumptions are adopted to establish the general equations of motion and the associated boundary and continuity conditions with the aid of Hamilton's principle. The resulting... 

    Free vibrations of functionally graded material cylindrical shell closed with two spherical caps

    , Article Ships and Offshore Structures ; Volume 17, Issue 4 , 2022 , Pages 939-951 ; 17445302 (ISSN) Bagheri, H ; Kiani, Y ; Bagheri, N ; Eslami, M. R ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Free vibration response of a cylindrical shell closed with two hemispherical caps at the ends (hermit capsule) is analysed in this research. It is assumed that the system of joined shell is made from functionally graded materials (FGM). Properties of the shells are assumed to be graded through the thickness. Cylindrical and hemispherical shells are unified in thickness. To capture the effects of through-the-thickness shear deformations and rotary inertias, first order theory of shells is used. Donnell type of kinematic assumptions are adopted to establish the general equations of motion and the associated boundary and continuity conditions with the aid of Hamilton's principle. The resulting... 

    Controlling the seismic response of structures under near-field earthquakes with fluid/structure interaction of cylindrical liquid tanks

    , Article European Journal of Environmental and Civil Engineering ; Volume 26, Issue 2 , 2022 , Pages 570-593 ; 19648189 (ISSN) Waezi, Z ; Attari, N. K. A ; Rofooei, F. R ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    In this paper, the effectiveness of using nonlinear fluid/structure interaction for controlling the seismic response of the structures under near-field earthquake is investigated. For this purpose an SDOF Structure is considered which is equipped with the circular cylindrical liquid tank. Considering its fundamental mode of vibration, the structure is an idealised model of multi-degree of freedom system. Under 72 horizontal near-field earthquake excitations, the dynamic response of this system is examined studying three liquid sloshing modes. The dynamic response is investigated in the neighbourhood of 1:1 resonance between first unsymmetrical sloshing mode and SDOF structural mode. For this... 

    Thermal buckling analysis of piezoelectric functionally graded plates with temperature-dependent properties

    , Article Mechanics of Advanced Materials and Structures ; Volume 22, Issue 10 , Nov , 2015 , Pages 864-875 ; 15376494 (ISSN) Yaghoobi, H ; Fereidoon, A ; Khaksari Nouri, M ; Mareishi, S ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    In this study, the thermal buckling analysis of hybrid laminated plates made of two-layered functionally graded materials (FGMs) that are integrated with surface-bonded piezoelectric actuators referred to as (P/FGM)s are investigated. Material properties for both substrate FGM layers and piezoelectric layers are temperature-dependent. Uniform temperature rise as a thermal load and constant applied actuator voltage are considered for this analysis. By definition of four new analytic functions, the five coupled governing stability equations, which are derived based on the first-order shear deformation plate theory, are converted into fourth-order and second-order decoupled partial differential... 

    Natural frequency analysis of functionally graded material truncated conical shell with lengthwise material variation based on first-order shear deformation theory

    , Article Mechanics of Advanced Materials and Structures ; Volume 23, Issue 5 , 2016 , Pages 565-577 ; 15376494 (ISSN) Asanjarani, A ; Kargarnovin, M. H ; Satouri, S ; Satouri, A ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    Based on the first-order shear deformation theory, the free vibration of the functionally graded (FG) truncated conical shells is analyzed. The truncated conical shell materials are assumed to be isotropic and inhomogeneous in the longitudinal direction. The two-constituent FG shell consists of ceramic and metal. These constituents are graded through the length, from one end of the shell to the other end. Using Hamilton's principle the derived governing equations are solved using differential quadrature method. Fast rate of convergence of this method is tested and its advantages over other existing solver methods are observed. The primary results of this study were obtained for four... 

    Vibration characteristics of laminated composite beams with magnetorheological layer using layerwise theory

    , Article Mechanics of Advanced Materials and Structures ; Volume 25, Issue 3 , 2018 , Pages 202-211 ; 15376494 (ISSN) Naji, J ; Zabihollah, A ; Behzad, M ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    Vibration characteristics of laminated composite beams with magnetorheological (MR) layer are investigated using layerwise theory. In most studies, shear strain across the thickness of MR layer has been considered as a constant value, which does not precisely describe the shear strain. In this study, layerwise theory is employed to develop a finite element formulation to investigate MR-laminated beams. Experimental tests under different magnetic fields are carried out to verify the numerical results. Layerwise numerical results are compared with the experimental results and other theories. An empirical expression for complex shear modulus is presented. The effects of MR layer thickness on... 

    Behavior of polymer concrete beam/pile confined with CFRP sleeves

    , Article Mechanics of Advanced Materials and Structures ; Volume 26, Issue 4 , 2019 , Pages 333-340 ; 15376494 (ISSN) Toufigh, V ; Toufigh, V ; Saadatmanesh, H ; Ahmari, S ; Kabiri, E ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    This research investigates the flexural behavior of a polymer concrete beam/pile encased with carbon fiber sleeve. The mechanical properties of carbon fiber sleeves in tension and cement and polymer concrete in compression were determined. Polymer concrete beams were tested in flexure to determine the bending moment capacity. Then, the test results were compared to the theoretical model results. Finally, a parametric study was conducted to determine the influence of beam/pile parameters on the capacity of the element. Based on the investigation, carbon fiber sleeve filled with polymer concrete exhibits outstanding structural performance including ductility and bending capacity  

    Experimental and analytical model analysis of Babolsar's steel arch bridge

    , Article 3rd International Conference on Bridge Maintenance, Safety and Management - Bridge Maintenance, Safety, Management, Life-Cycle Performance and Cost, Porto, 16 July 2006 through 19 July 2006 ; 2006 , Pages 235-237 ; 0415403154 (ISBN); 9780415403153 (ISBN) Beygi, M. H. A ; Kazemi, M. T ; Lark, B ; Tabrizian, Z ; Sharif University of Technology
    Taylor and Francis/ Balkema  2006
    Abstract
    The paper presents the experimental and analytical model analysis of a steel-girder arch bridge. The field test is carried out by ambient vibration testing under traffic excitations. Both the peak picking method in the frequency domain and the stochastic subspace identification method in the time domain are used for the output-only model identification. A good agreement in identified frequencies has been found between the two methods. It is further demonstrated that the stochastic subspace method provides better mode shapes. The three-dimensional finite element models are constructed and an analytical model analysis is then performed to generate natural frequencies and mode shapes in the... 

    Rolling contact mechanics of graded coatings involving frictional heating

    , Article Acta Mechanica ; Volume 230, Issue 6 , 2019 , Pages 1981-1997 ; 00015970 (ISSN) Nili, A ; Adibnazari, S ; Karimzadeh, A ; Sharif University of Technology
    Springer-Verlag Wien  2019
    Abstract
    The two-dimensional thermoelastic tractive rolling contact problem for a half-plane which is coated with a functionally graded material (FGM), under the plane strain deformation, is studied in this paper. A rigid cylinder rolls over the surface of an FGM coating with constant translational velocity, generating frictional heating in the slip zones of the contact area. Thermomechanical properties of the FGM vary exponentially along the thickness direction. It is assumed that the contact area consists of a central stick zone and two slip zones of the same sign. The transfer matrix method and Fourier integral transform technique are used to achieve a system of two Cauchy singular integral... 

    Nonlinear vibration and buckling of functionally graded porous nanoscaled beams

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 40, Issue 7 , July , 2018 ; 16785878 (ISSN) Mirjavadi, S. S ; Mohasel Afshari, B ; Khezel, M ; Shafiei, N ; Rabby, S ; Kordnejad, M ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Although many researchers have studied the vibration and buckling behavior of porous materials, the behavior of porous nanobeams is still a needed issue to be studied. This paper is focused on the buckling and nonlinear vibration of functionally graded (FG) porous nanobeam for the first time. Nonlinear Von Kármán strains are put into consideration to study the nonlinear behavior of nanobeam based on the Euler–Bernoulli beam theory. The nonlocal Eringen’s theory is used to study the size effects. The mechanical properties of ceramic and metal are used to model the functionally graded material through thickness, and the boundary conditions are considered as clamped–clamped (CC) and simply...