Loading...
Search for: bench-mark-problems
0.009 seconds
Total 30 records

    Enhanced finite difference scheme for the neutron diffusion equation using the importance function

    , Article Annals of Nuclear Energy ; Volume 96 , 2016 , Pages 412-421 ; 03064549 (ISSN) Vagheian, M ; Vosoughi, N ; Gharib, M ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Mesh point positions in Finite Difference Method (FDM) of discretization for the neutron diffusion equation can remarkably affect the averaged neutron fluxes as well as the effective multiplication factor. In this study, by aid of improving the mesh point positions, an enhanced finite difference scheme for the neutron diffusion equation is proposed based on the neutron importance function. In order to determine the neutron importance function, the adjoint (backward) neutron diffusion calculations are performed in the same procedure as for the forward calculations. Considering the neutron importance function, the mesh points can be improved through the entire reactor core. Accordingly, in... 

    RKPM with augmented corrected collocation method for treatment of material discontinuities

    , Article CMES - Computer Modeling in Engineering and Sciences ; Volume 62, Issue 2 , 2010 , Pages 171-204 ; 15261492 (ISSN) Shodja, H. M ; Khezri, M ; Hashemian, A ; Behzadan, A ; Sharif University of Technology
    2010
    Abstract
    An accurate numerical methodology for capturing the field quantities across the interfaces between material discontinuities, in the context of reproducing kernel particle method (RKPM), is of particular interest. For this purpose the innovative numerical technique, so-called augmented corrected collocation method is introduced; this technique is an extension of the corrected collocation method used for imposing essential boundary conditions (EBCs). The robustness of this methodology is shown by utilizing it to solve two benchmark problems of material discontinuities, namely the problem of circular inhomogeneity with uniform radial eigenstrain, and the problem of interaction between a crack... 

    Exhaust soot investigation in a JP combustor working at various wall temperatures

    , Article AIAA Aerospace Sciences Meeting, 2018, 8 January 2018 through 12 January 2018 ; Issue 210059 , 2018 ; 9781624105241 (ISBN) Schneider, G. E ; Ghafourizadeh, M ; Darbandi, M ; Saidi, M. H ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc, AIAA  2018
    Abstract
    In this study, a jet propulsion JP combustor is studied numerically to investigate the combustor wall temperature influences on the soot characteristics emitted at its exhaust. There are a number of ways to control the combustor wall temperatures benefiting from different wall cooling technologies. Irrespective of using different high technology cooling systems, it is important to recognize how the wall temperature can affect the soot emission from one specific JP engine. Before examining the main combustor, it is important to assess the accuracy of the computational fluids dynamics (CFD) tool via solving a benchmark problem. In this regard, the predicted flame structure for the benchmark... 

    An efficient tabu algorithm for the single row facility layout problem

    , Article European Journal of Operational Research ; Volume 205, Issue 1 , 2010 , Pages 98-105 ; 03772217 (ISSN) Samarghandi, H ; Eshghi, K ; Sharif University of Technology
    2010
    Abstract
    The general goal of the facility layout problem is to arrange a given number of facilities to minimize the total cost associated with the known or projected interactions between them. One of the special classes of the facility layout problem is the Single Row Facility Layout Problem (SRFLP), which consists of finding an optimal linear placement of rectangular facilities with varying dimensions on a straight line. This paper first presents and proves a theorem to find the optimal solution of a special case of SRFLP. The results obtained by this theorem prove to be very useful in reducing the computational efforts when a new algorithm based on tabu search for the SRFLP is proposed in this... 

    Robust multiple model adaptive control using fuzzy fusion

    , Article 2010 42nd Southeastern Symposium on System Theory, SSST 2010, Tyler, TX, 7 March 2010 through 9 March 2010 ; March , 2010 , Pages 19-24 ; 9781424456901 (ISBN) Sadati, N ; Dumont, G. A ; Feyz Mahdavian, H. R ; Sharif University of Technology
    2010
    Abstract
    A robust multiple model adaptive control strategy using fuzzy fusion (RMMAC-FF) is presented in this paper. The main idea in multi-model controllers is to identify the best model of the system at any instant of time and apply the appropriate control input to it. RMMAC-FF, integrates a fuzzy robust controller, with the fuzzy multiple model adaptive estimation and a fuzzy switching to come up with a new strong methodology to control complex systems. Simulation results of the RMMAC-FF on a two-cart system, used as a benchmark problem, verify the theory and confirm the effectiveness of the proposed controller  

    Novel interaction prediction approach to hierarchical control of large-scale systems

    , Article IET Control Theory and Applications ; Volume 4, Issue 2 , 2010 , Pages 228-243 ; 17518644 (ISSN) Sadati, N ; Ramezani, M. H ; Sharif University of Technology
    2010
    Abstract
    In this paper, a new interaction prediction approach for hierarchical control of non-linear large-scale systems is presented. The proposed approach uses a new gradient-type coordination scheme which is robust with respect to the parameters' variation, and also has a good convergence rate. In classical coordination strategies, which can be divided into the gradient-type and substitution-type approaches, it is not possible to improve the robustness and the convergence rate at the same time, since by increasing one the other decreases. The proposed approach has the main advantages of the gradient-type algorithms in being independent of the parameter's variation and also the initial guess of the... 

    Optimization of large-scale systems using gradient-type interaction prediction approach

    , Article Electrical Engineering ; Volume 91, Issue 4-5 , 2009 , Pages 301-312 ; 09487921 (ISSN) Sadati, N ; Ramezani, M. H ; Sharif University of Technology
    Abstract
    In this paper, a new decomposition-coordination framework is presented for two-level optimal control of large-scale nonlinear systems. In the proposed approach, decomposition is performed by defining an interaction vector, while coordination is based on a new interaction prediction approach. In the first level, sub-problems are solved for nonlinear dynamics using a gradient method, while in the second level, the coordination is done using the gradient of coordination errors. This is in contrast to the conventional gradient-type coordination schemes, where they use the gradient of Lagrangian function. It is shown that the proposed decomposition-coordination framework considerably reduces the... 

    Coordination of large-scale systems using a new interaction prediction approach

    , Article Proceedings of the Annual Southeastern Symposium on System Theory, 16 March 2008 through 18 March 2008, New Orleans, LA ; 2008 , Pages 385-389 ; 9781424418060 (ISBN) Sadati, N ; Ramezani, M. H ; Sharif University of Technology
    2008
    Abstract
    In this paper, a new interaction prediction approach is presented for optimal control of nonlinear large-scale systems. The proposed approach uses a new gradient-type coordination scheme which has a larger convergence region with respect to the parameters' variation, and also has a good convergence rate. In this approach, the coordination vector is updated using the gradient of coordination error. This type of coordination considerably reduces the number of iterations. The robustness and the convergence rate of the proposed approach against the best classical interaction prediction approaches are shown through simulations of a benchmark problem. © 2008 IEEE  

    Launch vehicle multi-objective reliability-redundancy optimization using a hybrid genetic algorithm-particle swarm optimization

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 229, Issue 10 , Nov , 2015 , Pages 1785-1797 ; 09544100 (ISSN) Raouf, N ; Pourtakdoust, S. H ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    This paper focuses on multi-objective reliability optimization of a two-stage launch vehicle using a hybridized Genetic Algorithm-Particle Swarm Optimization with provisions of relative weighting between the objectives. In this respect, the launch vehicle key subsystems as well as their functions are initially introduced. Subsequently, the system reliability block diagram is constructed using the launch vehicle working order of the subsystems augmented with the requirements for a robust fault/failure tolerant design and performance. Next, based on the proposed reliability block diagram arrangement a bi-objective optimization is formulated to maximize the system reliability while minimizing... 

    An optimal procedure for minimizing total weighted resource tardiness penalty costs in the resource-constrained project scheduling problem

    , Article Computers and Industrial Engineering ; Volume 62, Issue 1 , 2012 , Pages 264-270 ; 03608352 (ISSN) Ranjbar, M ; Khalilzadeh, M ; Kianfar, F ; Etminani, K ; Sharif University of Technology
    Abstract
    We present an optimal solution procedure for minimizing total weighted resource tardiness penalty costs in the resource-constrained project scheduling problem. In this problem, we assume the constrained renewable resources are limited to very expensive equipments and machines that are used in other projects and are not available in all periods of time of a project. In other words, for each resource, there is a dictated ready date as well as a due date such that no resource can be available before its ready date but the resources are permitted to be used after their due dates by paying penalty cost depending on the resource type. We also assume that only one unit of each resource type is... 

    3D simulation of propagation of hydraulically driven fractures in oil reservoirs using EFG mesh-less method considering coupled hydro-mechanical effects

    , Article Computer Methods and Recent Advances in Geomechanics - Proceedings of the 14th Int. Conference of International Association for Computer Methods and Recent Advances in Geomechanics, IACMAG 2014, 22 September 2014 through 25 September 2014, Kyoto ; September , 2015 , Pages 1675-1680 ; 9781138001480 (ISBN) Pak, A ; Samimi, S ; Sharif University of Technology
    Taylor and Francis - Balkema  2015
    Abstract
    Creating hydraulically induced fractures in oil/gas reservoirs is one of the methods for Enhanced Oil Recovery (EOR) that has been applied extensively in petroleum industry in recent years. Despite its popularity, the design process of Hydraulic Fracture treatment is mostly empirical based on the previous experiences gained in the oil-rich formation. The reason lies in the complexities involved in the Hydraulic Fracture process including interacting effects of fluid(s) flowand solid deformations, injection of non-Newtonian fluids in the porous media, leak-off of the injected fluid into the formation, complex geometry of the induced fracture in the intact or naturally fractured rock,... 

    Studying effect of entrainment on dynamics of debris flows using numerical simulation

    , Article Computers and Geosciences ; Volume 134 , 2020 Nikooei, M ; Manzari, M. T ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This paper studies entrainment phenomenon in debris flows using full flow (non-depth-averaged) equations and an Incompressible Smoothed Particle Hydrodynamics (ISPH) method. A viscoplastic constitutive relationship is adopted for both the overlying fluid and bed material. Collapse of a two-dimensional dry granular column on a horizontal bed consisting of entrainable dry granular material is considered as a benchmark problem. The adopted ISPH method for simulation of collapse over rigid and entrainable beds is validated using available numerical and experimental data. To quantify the effects of entrainment on dynamics of flow, the initial aspect ratio of granular column (a) is varied and the... 

    Investigating the effect of mixing layer rheology on granular flow over entrainable beds using SPH method

    , Article Computers and Geosciences ; Volume 155 , 2021 ; 00983004 (ISSN) Nikooei, M ; Manzari, M. T ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This paper numerically studies the interaction of a flowing granular material with an entrainable granular bed, while materials are mixed at the interface of two materials. The rheological behavior of this granular mixture is characterized by a generalized viscoplastic model that includes local volume fraction of materials as well as their physical properties, i.e. size, density, and friction angle. Additionally, the effect of the dynamics of entrained bed-type particles on the rheology of the granular mixture is considered. The governing equations of the flow are discretized using the Incompressible Smoothed Particle Hydrodynamics (SPH) method in which mixing of particles can be... 

    A revised particle swarm optimization based discrete Lagrange multipliers method for nonlinear programming problems

    , Article Computers and Operations Research ; Volume 38, Issue 8 , 2011 , Pages 1164-1174 ; 03050548 (ISSN) Mohammad Nezhad, A ; Mahlooji, H ; Sharif University of Technology
    Abstract
    In this paper, a new algorithm for solving constrained nonlinear programming problems is presented. The basis of our proposed algorithm is none other than the necessary and sufficient conditions that one deals within a discrete constrained local optimum in the context of the discrete Lagrange multipliers theory. We adopt a revised particle swarm optimization algorithm and extend it toward solving nonlinear programming problems with continuous decision variables. To measure the merits of our algorithm, we provide numerical experiments for several renowned benchmark problems and compare the outcome against the best results reported in the literature. The empirical assessments demonstrate that... 

    A graph-theoretic approach toward autonomous skill acquisition in reinforcement learning

    , Article Evolving Systems ; Volume 9, Issue 3 , 2018 , Pages 227-244 ; 18686478 (ISSN) Kazemitabar, S. J ; Taghizadeh, N ; Beigy, H ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Hierarchical reinforcement learning facilitates learning in large and complex domains by exploiting subtasks and creating hierarchical structures using these subtasks. Subtasks are usually defined through finding subgoals of the problem. Providing mechanisms for autonomous subgoal discovery and skill acquisition is a challenging issue in reinforcement learning. Among the proposed algorithms, a few of them are successful both in performance and also efficiency in terms of the running time of the algorithm. In this paper, we study four methods for subgoal discovery which are based on graph partitioning. The idea behind the methods proposed in this paper is that if we partition the transition... 

    A new hybrid approach for dynamic continuous optimization problems

    , Article Applied Soft Computing Journal ; Volume 12, Issue 3 , 2012 , Pages 1158-1167 ; 15684946 (ISSN) Karimi, J ; Nobahari, H ; Pourtakdoust, S. H ; Sharif University of Technology
    2012
    Abstract
    A new hybrid approach for dynamic optimization problems with continuous search spaces is presented. The proposed approach hybridizes efficient features of the particle swarm optimization in tracking dynamic changes with a new evolutionary procedure. In the proposed dynamic hybrid PSO (DHPSO) algorithm, the swarm size is varied in a self-regulatory manner. Inspired from the microbial life, the particles can reproduce infants and the old ones die. The infants are especially reproduced by high potential particles and located near the local optimum points, using the quadratic interpolation method. The algorithm is adapted to perform in continuous search spaces, utilizing continuous movement of... 

    Influence of new superhydrophobic micro-structures on delaying ice formation

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 595 , 2020 Kamali Moghadam, R ; Taeibi Rahni, M ; Javadi, K ; Davoudian, S. H ; Miller, R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Drop motion on different types of new proposed micro-structure surfaces has been numerically investigated to find the optimum structure in view point of ice formation delaying. The droplet automatically moves on the inclined surfaces due to gravity forces. To validate the numerical algorithm, three different bench mark problems have been considered. The results indicate that the present algorithm is trustable for the presented numerical simulations. Then the validated numerical approach has been used to simulate droplet motion on nine proposed superhydrophobic surfaces in the same conditions. Comparison the drop motion on different micro-structure surfaces at different time indicate that... 

    A consistent incompressible SPH method for internal flows with fixed and moving boundaries

    , Article International Journal for Numerical Methods in Fluids ; Volume 81, Issue 10 , 2016 , Pages 589-610 ; 02712091 (ISSN) Jahangiri Mamouri, S ; Fatehi, R ; Taghizadeh Manzari, M ; Sharif University of Technology
    John Wiley and Sons Ltd 
    Abstract
    An improved incompressible smoothed particle hydrodynamics (ISPH) method is presented, which employs first-order consistent discretization schemes both for the first-order and second-order spatial derivatives. A recently introduced wall boundary condition is implemented in the context of ISPH method, which does not rely on using dummy particles and, as a result, can be applied more efficiently and with less computational complexity. To assess the accuracy and computational efficiency of this improved ISPH method, a number of two-dimensional incompressible laminar internal flow benchmark problems are solved and the results are compared with available analytical solutions and numerical data.... 

    Development of two-dimensional, multigroup neutron diffusion computer code based on GFEM with unstructured triangle elements

    , Article Annals of Nuclear Energy ; Volume 51 , 2013 , Pages 213-226 ; 03064549 (ISSN) Hosseini, S. A ; Vosoughi, N ; Sharif University of Technology
    2013
    Abstract
    Various methods for solving the forward/adjoint equation in hexagonal and rectangular geometries are known in the literatures. In this paper, the solution of multigroup forward/adjoint equation using Finite Element Method (FEM) for hexagonal and rectangular reactor cores is reported. The spatial discretization of equations is based on Galerkin FEM (GFEM) using unstructured triangle elements. Calculations are performed for both linear and quadratic approximations of the shape function; based on which results are compared. Using power iteration method for the forward and adjoint calculations, the forward and adjoint fluxes with the corresponding eigenvalues are obtained. The results are then... 

    Neutron noise simulation by GFEM and unstructured triangle elements

    , Article Nuclear Engineering and Design ; Volume 253 , 2012 , Pages 238-258 ; 00295493 (ISSN) Hosseini, S. A ; Vosoughi, N ; Sharif University of Technology
    2012
    Abstract
    In the present study, the neutron noise, i.e. The stationary fluctuation of the neutron flux around its mean value, is calculated in 2-group forward and adjoint diffusion theory for both hexagonal and rectangular reactor cores. To this end, the static neutron calculation is performed at the first stage. The spatial discretization of equations is based on linear approximation of Galerkin Finite Element Method (GFEM) using unstructured triangle elements. Using power iteration method, forward and adjoint fluxes with the corresponding eigenvalues are obtained. The results are then benchmarked against the valid results for BIBLIS-2D and IAEA-2D benchmark problems and DONJON computer code. The...