Loading...
Search for: bending-strength
0.006 seconds
Total 50 records

    The effect of pore morphology and agarose coating on mechanical properties of tricalcium phosphate scaffolds

    , Article International Journal of Applied Ceramic Technology ; Volume 19, Issue 5 , 2022 , Pages 2713-2722 ; 1546542X (ISSN) Gorgin Karaji, Z ; Bagheri, R ; Amirkhani, S ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Three-dimensional biocompatible porous structures can be fabricated using different methods. However, the biological and mechanical behaviors of scaffolds are the center of focus in bone tissue engineering. In this study, tricalcium phosphate scaffolds with similar porosity contents but different pore morphologies were fabricated using two different techniques, namely, the replica method and the pore-forming agent method. The samples fabricated using the pore-forming agent showed more than two times higher compressive and bending strengths and more than three times higher compressive moduli. Furthermore, a thin layer of agarose coating improved the compressive and bending strength of both... 

    An experimental investigation into the mechanical performance and microstructure of cementitious mortars containing recycled waste materials subjected to various environments

    , Article Journal of Building Engineering ; Volume 61 , 2022 ; 23527102 (ISSN) Mohseni pour asl, J ; Gholhaki, M ; Sharbatdar, M ; Pachideh, G ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This paper deals with an experimental investigation into the mechanical performance and microstructure characteristics of the cementitious mortars containing recycled waste materials subjected to acidic, neutral and alkaline environments. The recycled waste materials include glass, eggshell, iron and rubber powder in various amounts, namely 7, 14 and 21% by volume, as the replacement for ordinary Portland cement (OPC). In this respect, to examine the mechanical performance of the specimens, the compressive, tensile and bending strength tests as well as water absorption test were carried out at the ages of 7, 28 and 90 days. Moreover, to study the microstructure of the specimens, the scanning... 

    Experimental investigation and finite element modelling of PMMA/carbon nanotube nanobiocomposites for bone cement applications

    , Article Soft Matter ; Volume 18, Issue 36 , 2022 , Pages 6800-6811 ; 1744683X (ISSN) Sadati, V ; Khakbiz, M ; Chagami, M ; Bagheri, R ; Chashmi, F. S ; Akbari, B ; Shakibania, S ; Lee, K. B ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Multi-walled carbon nanotubes (MWCNTs) are one of the preferred candidates for reinforcing polymeric nanobiocomposites, such as acrylic bone type of cement. In this study, at first, bulk samples of the reinforced polymethylmethacrylate (PMMA) matrix were prepared with 0.1, 0.25, and 0.5 wt per wt% of MWCNTs by the casting method. Tensile and three-point bending tests were performed to determine the essential mechanical properties of bone cement, such as tensile and bending strengths. The tensile fracture surfaces were investigated by scanning electron microscopy (SEM). The commercial software (Abaqus) was used to conduct finite element analysis (FEA) by constructing a representative volume... 

    Evaluation of strong column-weak beam criterion in spliced columns of steel moment frames

    , Article Results in Engineering ; Volume 14 , 2022 ; 25901230 (ISSN) Shamszadeh, M. M ; Maleki, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In the seismic design of steel special moment frames, it is necessary to ensure that columns are generally stronger than beams. This reduces the probability of a weak story failure mechanism of the frame and ensures the formation of beams' plastic hinges earlier than the columns'. This criterion is known as strong column-weak beam (SCWB) in seismic design codes and is checked by a formula in the form of a ratio of total flexural strengths of columns to beams framing at each joint. It is common practice to ignore the column section change at the splice location and to use the flexural strength of the larger column section in evaluating this ratio. In this paper, several steel special moment... 

    An analytical review on Spark Plasma Sintering of metals and alloys: from processing window, phase transformation, and property perspective

    , Article Critical Reviews in Solid State and Materials Sciences ; 2022 ; 10408436 (ISSN) Abedi, M ; Sovizi, S ; Azarniya, A ; Giuntini, D ; Seraji, M. E ; Hosseini, H. R. M ; Amutha, C ; Ramakrishna, S ; Mukasyan, A ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    ABSTRACTs: The need for fully dense material with well-engineered microstructures has led to the promising emergence of innovative sintering technologies among which the Spark Plasma Sintering (SPS) is one of the most favorite. Unlike the conventional sintering processes, SPS takes advantage of a current flow passing through the sintering die and metallic powders by which fast densification with minimal grain growth and enhanced physicomechanical properties can be obtained. Albeit there is a growing interest in the exploitation of SPS in producing sufficiently consolidated metallic parts, no analytical review has been released over the effects of SPS parameters on the densification behavior,... 

    Strength of SCLC recycled springs and fibers concrete subject to high temperatures

    , Article Structural Concrete ; Volume 23, Issue 1 , 2022 , Pages 285-299 ; 14644177 (ISSN) Pachideh, G ; Toufigh, V ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    In this article, the self-compacting lightweight concretes (SCLC) with different fibers were prepared and exposed to elevated temperatures, and their mechanical properties were investigated. Three types of fibers were steel fibers (SF), polypropylene fibers (PPF), and metal springs with a volume fraction of 0.4%. One hundred and fifty cylindrical specimens were prepared, and the compression, tensile and flexural tests were carried out on them after exposure to high temperatures ranging from 25 to 700°C. The findings indicate that incorporation of steel fibers and springs enhanced the compressive strength of concrete by 20% compared to the control specimen. Meanwhile, the polypropylene fibers... 

    Effect of compressive glass fiber-reinforced polymer bars on flexural performance of reinforced concrete beams

    , Article ACI Structural Journal ; Volume 119, Issue 6 , 2022 , Pages 5-18 ; 08893241 (ISSN) Hassanpour, S ; Khaloo, A ; Aliasghar Mamaghani, M ; Khaloo, H ; Sharif University of Technology
    American Concrete Institute  2022
    Abstract
    This research studies the effect of glass fiber-reinforced polymer (GFRP) bars as compressive reinforcement in reinforced concrete (RC) beam members. Three singly and six doubly reinforced GFRP-RC beams were tested under a four-point loading configuration. The effect of compressive reinforcement on the load-bearing capacity, ductility, stiffness, and failure mode is determined. Also, the compressive performance of GFRP bars is evaluated by testing GFRP-RC cylinders. According to the results, GFRP bars in compression had a limited contribution to enhancing flexural strength, and the maximum increment in the flexural capacity of doubly reinforced beams compared to singly reinforced specimens... 

    Mechanical characteristics of cement paste in the presence of carbon nanotubes and silica oxide nanoparticles: An experimental study

    , Article Materials ; Volume 14, Issue 6 , 2021 ; 19961944 (ISSN) Karakouzian, M ; Farhangi, V ; Farani, M. R ; Joshaghani, A ; Zadehmohamad, M ; Ahmadzadeh, M ; Sharif University of Technology
    MDPI AG  2021
    Abstract
    Considering the remarkable characteristics of nanomaterials, previous research studies investigated the effects of incorporating different types of these materials on improving the concrete properties. However, further studies are required to evaluate the complementary hybridization and synergistic influence of nanomaterials. In this research, the combined effect of adding nano silica particles (NS) and multi-walled carbon nanotubes (MWCNT) on enhancing both the compressive and flexural strengths of the cement paste was investigated. Moreover, the morphology of the interface between cement paste and aggregates was studied by scanning electron microscopy (SEM). The mixtures were prepared... 

    Investigation of flexural capacity of concrete containing liquid silicone rubber

    , Article Shock and Vibration ; Volume 2021 , 2021 ; 10709622 (ISSN) Khaloo, A ; Parvin Darabad, Y ; Sharif University of Technology
    Hindawi Limited  2021
    Abstract
    Despite the great use of concrete, tensile strength and low flexibility and brittleness are its weaknesses. Many solutions have been provided to eliminate the mentioned defects. In order to increase the flexibility of concrete in previous studies, crushed rubber tire particles have been added to concrete. Recycling car tires helps the environment and makes concrete much more flexible than regular concrete. In this research, silicone rubber has been replaced by 0%, 2%, 4%, 8%, 12.5%, 25%, and 50% of mineral aggregates. This rubber was initially in liquid form, which, after mixing with ordinary concrete, dispersed into the concrete texture and formed a uniform mixture, and this liquid rubber... 

    Strength of SCLC recycle springs and fibers concrete subject to high temperatures

    , Article Structural Concrete ; 2021 ; 14644177 (ISSN) Pachideh, G ; Toufigh, V ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    In this article, the self-compacting lightweight concretes (SCLC) with different fibers were prepared and exposed to elevated temperatures, and their mechanical properties were investigated. Three types of fibers were steel fibers (SF), polypropylene fibers (PPF), and metal springs with a volume fraction of 0.4%. One hundred and fifty cylindrical specimens were prepared, and the compression, tensile and flexural tests were carried out on them after exposure to high temperatures ranging from 25 to 700°C. The findings indicate that incorporation of steel fibers and springs enhanced the compressive strength of concrete by 20% compared to the control specimen. Meanwhile, the polypropylene fibers... 

    Rubberized alkali-activated slag mortar reinforced with polypropylene fibres for application in lightweight thermal insulating materials

    , Article Construction and Building Materials ; Volume 270 , 2021 ; 09500618 (ISSN) Rajaei, S ; Shoaei, P ; Shariati, M ; Ameri, F ; Musaeei, H. R ; Behforouz, B ; de Brito, J ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Every year, about a thousand million tires reach the end of their service life, more than half of which are disposed of in landfills. The waste tire rubber has a great potential for application as aggregate phase in production of lightweight concrete/mortar. This study is aimed at evaluating the effects of using crumb rubber (CR) as fine aggregate at replacement ratios of 0–60% (by volume) in alkali-activated slag mortars. Furthermore, polypropylene fibre (PPF) was used at 0.5% and 1% of volume of the mix to enhance the properties of mortar mixes such as flexural strength and shrinkage behaviour. The compressive strength, flexural strength, water absorption, thermal conductivity, drying... 

    Comparative study on the effect of fiber type and content on the fire resistance of alkali-activated slag composites

    , Article Construction and Building Materials ; Volume 288 , 2021 ; 09500618 (ISSN) Shoaei, P ; Ghassemi, P ; Ameri, F ; Musaeei, H. R ; Chee Ban, C ; Ozbakkaloglu, T ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Alkali-activated slag (AAS) binder has been recognized as a suitable material for construction applications owing to its low carbon footprint and good mechanical and durability performance. As a promising alternative to the conventional Portland cement binder, it is important to maximize the performance of AAS composites under normal and harsh environmental conditions such as exposure to fire. The use of fibers in a brittle matrix is a well-known approach to enhance the mechanical strength and cracking behavior under thermal loading. In this study, polypropylene fiber (PPF), glass fiber (GF), and basalt fiber (BF) are used at volume fractions of 0.5%, 1%, and 1.5% in AAS mortar mixes. First,... 

    A new procedure for the fabrication of dissimilar joints through injection of colloidal nanoparticles during friction stir processing: Proof concept for AA6062/PMMA joints

    , Article Journal of Manufacturing Processes ; Volume 49 , 2020 , Pages 335-343 Aghajani Derazkola, H ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    We present a new semi-solid state procedure for efficient joining of dissimilar materials. The process called fed friction stir processing (FFSP) and works based on in-situ injection of colloidal nanoparticles in the welding line during processing. To present the efficiency of the process, friction stir welding of AA6062 aluminum alloy and poly(methyl methacrylate) (PMMA) through injection of alumina nanoparticles is presented. Microstructural features and mechanical characteristics of the weldments are elaborated. It is shown that in-situ feeding of the alumina nanoparticles during FFSP changes the thermo-mechanical regimes of the bonding zone and decreases the thickness of interaction... 

    Anisotropic elastic-plastic behavior of architected pyramidal lattice materials

    , Article Acta Materialia ; Volume 183 , 2020 , Pages 118-136 Eynbeygui, M ; Arghavani, J ; Akbarzadeh, A. H ; Naghdabadi, R ; Sharif University of Technology
    Acta Materialia Inc  2020
    Abstract
    The initial and subsequent yield surfaces for architected pyramidal lattice materials are investigated analytically. Considering lattice struts as elastic-perfectly plastic thin beams subjected to both axial force and bending moment, a set of nonlinear elastic-plastic constitutive relations for a strut is proposed. Moreover, we phenomenologically present anisotropic pressure-dependent yield functions for pyramidal lattices. Comparison of planar yield surfaces of pyramidal lattices predicted by analytical approach to the ones obtained from phenomenological models shows a good agreement for the type of external loads and range of strains investigated in this study. Investigating the normality... 

    Effect of SiO2 content on Y-TZP/Al2O3 ceramic-nanocomposite properties as potential dental applications

    , Article Ceramics International ; Volume 46, Issue 8 , 2020 , Pages 10910-10916 Rahimi, S ; SharifianJazi, F ; Esmaeilkhanian, A ; Moradi, M ; Safi Samghabadi, A. H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) have been widely applied in fixed partial prostheses as well as dental uses i.e. a substructure for crowns. However, Y-TZP has limited applications, which is due to the presence of defects in its microstructure introduced during the manufacturing process. Accordingly, due to Y-TZP limitations, the novel (X)Y-TZP- 20Al2O3-(80-X) SiO2 (X = 65, 70 and 75) ceramic nanocomposites were successfully fabricated via the powder metallurgy method. X-ray diffraction (XRD) patterns of commercial powders showed the stabilization of monoclinic zirconia (ZM) by increasing the silica content. In order to determine the fracture load and micro-bending... 

    Rubberized alkali-activated slag mortar reinforced with polypropylene fibres for application in lightweight thermal insulating materials

    , Article Construction and Building Materials ; 2020 Rajaei, S ; Shoaei, P ; Shariati, M ; Ameri, F ; Musaeei, H. R ; Behforouz, B ; de Brito, J ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Every year, about a thousand million tires reach the end of their service life, more than half of which are disposed of in landfills. The waste tire rubber has a great potential for application as aggregate phase in production of lightweight concrete/mortar. This study is aimed at evaluating the effects of using crumb rubber (CR) as fine aggregate at replacement ratios of 0–60% (by volume) in alkali-activated slag mortars. Furthermore, polypropylene fibre (PPF) was used at 0.5% and 1% of volume of the mix to enhance the properties of mortar mixes such as flexural strength and shrinkage behaviour. The compressive strength, flexural strength, water absorption, thermal conductivity, drying... 

    Investigating the effect of heat treatment on the fracture toughness of a hot extruded Al–Ti composite produced by powder metallurgy route

    , Article Materials Science and Engineering A ; Volume 771 , 2020 Rezaei, A ; Madaah Hosseini, H. R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    An Al-5 wt% Ti composite was fabricated via powder metallurgy technique and hot extrusion. The produced composite samples were heat-treated subsequently at 600 °C for various time durations of 0, 4 and 10 h to achieve different volume fractions of the intermetallic Al3Ti phase. Pure aluminum sample was produced as a benchmark specimen to be compared to the composite samples. SEM studies were used to investigate the microstructure of the composite samples, and it was revealed that core-shell structured particles were formed in the composite heat-treated for 4 h. Triple point bending test was performed on the single edge notched beam specimens of the heat-treated Al-5 wt% Ti composite and the... 

    The effect of mixing molar ratios and sand particles on microstructure and mechanical properties of metakaolin-based geopolymers

    , Article Materials Chemistry and Physics ; Volume 240 , 2020 Riahi, S ; Nemati, A ; Khodabandeh, A. R ; Baghshahi, S ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study the influence of the molar ratios such as SiO2:Al2O3:Na2O:H2O, as well as the sand particles on the mechanical performance, shrinkage and microstructure of metakaolin based geopolymers was studied. Considering different content of the reactive silica and alumina in metakaolin, forty eight different compositions were prepared. The proper condition for achieving the highest mechanical performance as well as less structural defects by tailoring the curing condition, molar ratios and addition of sand particles are presented. Special attention was paid to the incorporation of sand particles up to 70 wt% on the microstructure, shrinkage and mechanical properties of metakaolin based... 

    Green high strength concrete containing recycled waste ceramic aggregates and waste carpet fibers: Mechanical, durability, and microstructural properties

    , Article Journal of Building Engineering ; Volume 26 , 2019 ; 23527102 (ISSN) Zareei, S. A ; Ameri, F ; Bahrami, N ; Shoaei, P ; Musaeei, H. R ; Nurian, F ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This paper investigated the combined utilization of recycled waste ceramic aggregate (RWCA) and waste carpet fibers (WCFs) in high strength concrete (HSC). Concrete mixes containing different percentages of RWCA including 20%, 40%, 60% (by weight) as partial replacement of natural coarse aggregate (NCA) were prepared. To enhance the tensile and flexural strength of concrete, 1.0% (by volume) WCF was added to the mixes. The slump and density of the fresh concrete were evaluated, both of which demonstrated a decreasing trend with incorporation of RWCA and WCF. With regard to the hardened concrete, replacing 40% of NCA with RWCA led to the optimum mechanical properties and increased the... 

    Friction stir welding of polycarbonate lap joints: Relationship between processing parameters and mechanical properties

    , Article Polymer Testing ; Volume 79 , 2019 ; 01429418 (ISSN) Aghajani Derazkola, H ; Simchi, A ; Lambiase, F ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The relation between process parameters and properties of polycarbonate (PC) sheet after friction stir welding (FSW) was investigated. Effects of FSW tool rotation speed (ω), travelling speed (V), tilt angle (α) and plunge depth on material flow, joint tensile strength, flexural strength, impact energy and hardness were investigated. It is shown that at low and high levels of heat input sound joints cannot be attained. At low heat inputs, the local temperature is not high enough to decrease the viscosity of the polymer to fill the interface, and thus voids and large planar cracks are formed in the joint root and stir zone. At high heat inputs, expelling of materials due to high peak...