Loading...
Search for: biodegradation
0.011 seconds
Total 216 records

    Fabricating Scaffold by Electrospinning with Natural Polymers for Creating Skin Wound Dressings

    , M.Sc. Thesis Sharif University of Technology Yousefi Zowj, Farnaz (Author) ; Alemzadeh, Iran (Supervisor) ; Vosoughi, Manouchehr (Supervisor)
    Abstract
    Skin, the largest organ in the body, presents sophisticated functions for maintaining the structural integrity of the entire body. Skin can regulate the temperature of the body, protect the body against microorganisms, have a sensory function, and produce vitamin-D through UV exposure when in direct sunlight.Due to the self-healing property of skin tissue, skin can be repaired by itself. Nevertheless, if extensive skin loss happens, owing to diabetic ulcers or deep burns, skin will not be able to repair the wound by itself. Therefore, it will lose its functions, and the fabrication of a skin equivalent will be necessary. These skin equivalents will cover the wound, regenerate the native... 

    Monitoring of Biodegradation of Oxalate in Microfluidic Bioelectrochemical Systems

    , M.Sc. Thesis Sharif University of Technology Yousefi, Reyhaneh (Author) ; Bastani, Daryoush (Supervisor) ; Yaghmaei, Soheila (Supervisor) ; Mardanpour, Mohammad Mehdi (Co-Supervisor)
    Abstract
    In present study, bioelectrochemical degradation of oxalate as a substance which its concentration in kidney leads to urolithiasis in a microfluidic microbial fuel cell (MFC) was investigated. In addition, to define a novel application for the microfluidic MFC, measurement and monitoring of oxalate concentration were studied. This application can introduce the system as an implantable medical device for medical usage of urolithiasis and hyperoxaluria diseases. In this work, by designing and fabrication of two MFCs including a large-scale and microfluidic one, and measuring the outlet concentration of oxalate in the large-scale system, the outlet concentration of oxalate at microfluidic MFC... 

    Investigation into the Effect of Adding Sr on Microstructure, Mechanical Properties and Biodegradability Behavior of Biodegradable Mg-Zn-Sr Alloys

    , M.Sc. Thesis Sharif University of Technology Gerashi, Ehsan (Author) ; Alizadeh, Reza (Supervisor)
    Abstract
    Biodegradable implants are new generation of implants that require no secondary surgery for their removal. Mg exhibits a great potential to be used as the biodegradable implant. However, mechanical properties and biocorrosion behavior of Mg are not suitable for being used as biodegradable implants. In this study, effects of Sr additions, heat treatments (T4 and T6), and multi-directional forging on the microstructural evolution, mechanical properties and biocorrosion behavior of Mg-4Zn-xSr alloys, and also the effect of hydrothermal coating on the biocorrosion behavior of Mg-4Zn-0.3Sr alloy were investigated. Potentiodynamic polarization and hydrogen evolution methods were used to... 

    Biodegradability Studies of Atrazine in Bioreactor Receiving Low-Level COD Wastewater

    , M.Sc. Thesis Sharif University of Technology Kamanmalek, Sara (Author) ; Borghei, Mehdi (Supervisor)
    Abstract
    Atrazine is widely used in the agriculture as an herbicide. Due to its high mobility, Atrazine leaks into the groundwater, surface waters, and drinking water wells. Many physical and chemical methods have been suggested for removing Atrazine from aquatic environments. However, these methods are very costly, have many performance problems, produce a lot of toxic intermediates which are very harmful and dangerous, and cannot completely mineralize Atrazine. In this study, biodegradation of Atrazine by microbial consortium was evaluated in the aquatic environment. In order to assess the Atrazine removal from the aquatic environment, Fixed-Bed biofilm reactor and Moving Bed Biofilm Reactor were... 

    Na Alginate/PVP/Hap nano-composites Hydrogels

    , M.Sc. Thesis Sharif University of Technology Kamali Moghadam, Zahra (Author) ; Frounchi, Masoud (Supervisor)
    Abstract
    In this research, we developed a drug release system of two biocompatible and biodegradable polymers and biocompatible ceramic nanoparticles. Hydrogels of sodium alginate (SA) were crosslinked using calcium chloride. The SA hydrogels were blended with polyvinyl pyrrolidone (PVP) and mixed with hydroxyapatite nanoparticles (HAP) to make hydrogel nanocomposites in the form of microbeads as drug carriers. Ciprofloxacin was selected as a model antibiotic drug for treatment of bone infection. It was found that SA and PVP form hydrogen bonds and are miscible at whole range of concentrations. Indeed, the SA/PVP blends may be considered as interpenetrating polymer networks (IPNs). HAP nanoparticles... 

    Isolation and Identification of Native Microorganisms Capable of Biological Degradation of Microplastics and Evaluation of its Performance in the Degradation of These Microplastics

    , M.Sc. Thesis Sharif University of Technology Kashisaz Shahriyar (Author) ; Yaghmaei, Soheila (Supervisor) ; Ghobadi Nejad, Zahra (Supervisor) ; Hamzehluoyan, Tayebeh (Supervisor)
    Abstract
    In recent years, non-biodegradable microplastics (MPs), which cause a lot of pollution in the environment, have become a major concern worldwide. Due to their small size and large surface area, these plastic particles have a great ability to be absorbed into biological cells. Due to their hydrophobic surface, these particles have the ability to absorb pollutants such as heavy metals, toxic medicinal substances, softeners, etc. Microplastics are usually persistent in the environment, allowing them to be transported along the food chain. Research on the degradation of microplastics is focused on biological and non-biological approaches. To date, microorganisms such as algae, fungi, and... 

    Preperation and Properties of Biodegradable Nanocomposites Packaging Films

    , M.Sc. Thesis Sharif University of Technology Pourkhanali Jirandehi, Khadijeh (Author) ; Alemzadeh, Iran (Supervisor) ; Vossoughi, Manoochehr (Supervisor)
    Abstract
    Increasing use of polymeric materials, especially in the packaging industry, besides the problems that exist in recycling these materials, has become a serious concern for the environment. The synthetic polymers are used widely in packaging industry so they have a considerable role in waste production in packaging industry. One way to solve this problem is adding a natural polymer to the synthetic polymer, as a result it becomes friendly environmentally. Starch is one of these natural polymers which is cheap and has the ability to complete degradation in the environment.using row starch in the polymeric compounds causes a severe drop in compound’s properties. For this reason, row starch must... 

    Study on Effects of Short Wood Fibers on Physical and Mechanical Properties of Biodegradable Composite Based on Thermoplastic Starch

    , M.Sc. Thesis Sharif University of Technology Pesaran Haji Abbas, Ehsan (Author) ; Bagheri, Reza (Supervisor) ; Sayyed Reihani, Morteza (Supervisor)
    Abstract
    Due to the negative effects of conventional plastics on the enviroment, especially in the packaging sector, extensive efforts have been put to replace these polymers with biodegradable polymers. Starch is one of the biodegradable polymers which has attracted a lot of attentions because of low cost and good processability. Native starch has the form of granule and can be processed to a continuous phase after gelatinization in the presence of a plasticizer. The resulting material is a biodegradable plastic-like material called thermoplastic starch (TPS) which is processed using conventional technologies, but suffers from low mechanical properties and high hydrophilicity. Addition of natural... 

    Fabrication of Porous Gelatin-based Scaffold and Evaluation of Effect of Gamma Irradiation

    , M.Sc. Thesis Sharif University of Technology Vahidi, Milad (Author) ; Forounchi, Massoud (Supervisor) ; Dadbin, Susan (Supervisor)
    Abstract
    Biocompatible porous polymeric scaffolds provide a suitable 3-D environment for proliferation of stem cells in human body. For instance, growth and proliferation concurrent with differentiation of stem cells in such scaffolds can regenerate the tissues or organs. In this attitude we fabricated a porous Gelatin-based scaffold using both of freeze-drying and freeze-extraction methods.Also, effect fo gamma irradiation on microstructure of scaffolds was investigated. In addition, poly(ethylene glycol) was employed to make the scaffold softer. Moreover, effects of various parameters including freezing temperature, cross-linking agent concentration, gelatin and PEG concentrations and their... 

    Surveying The Biodegradation Behavior, Biocompatibility and Mechanical Properties of Mg-4Zn-xAl-0.2Ca Alloys

    , M.Sc. Thesis Sharif University of Technology Homayun, Bahman (Author) ; Afshar, Abdollah (Supervisor)
    Abstract
    Due to their favorable biodegradability, Magnesium and its alloys have always attracted such a lot of research interests for making temporary implants. With the same direction, Mg-4Zn-0.2Ca has recently absorbed lots of research interests, due to its excellent biocompatibility. As the most regarded draw back concerned with this alloy, poor corrosion resistance is frequently discussed. Accordingly, in the present work it has been tried to come over this problem by addition different amount of aluminum, including 1, 3, 5, 7.5, and 10 percent, to this alloy; without causing any negative effect on its biocompatibility, and to present a new alloy composition with modified degradation behavior.... 

    An Investigation into the Microstructure and Mechanical Properties of Biodegradable Magnesium Alloys Composite-carbon Nanotube Produced by the Mechanical Alloying and Powders Pressing Processes

    , M.Sc. Thesis Sharif University of Technology Naseri, Maryam (Author) ; Karimi Taheri, Ali (Supervisor)
    Abstract
    Properties of biomaterials, especially in application as planting, can be controlled and optimized by alloying and hardening sedimentation. In recent years, the study on the simultaneous improvement of mechanical properties, toughness and corrosion behavior of magnesium composite by carbon nanotubes (CNTs) is very limited. In this study, the behavior of mechanical properties and corrosion of magnesium alloy composites with different percentages of CNTs have been investigated. The production of magnesium alloy composite by powder metallurgy and aging process have been used as effective methods for improving mechanical properties and increasing the corrosion resistance of magnesium alloys. For... 

    Preparation of Biodegradeble Nanocomposite with Appropriate Physical and Mechanical Properties for Bread Packaging

    , M.Sc. Thesis Sharif University of Technology Mavahebi Tabatabaei, Farzaneh (Author) ; Ramezani Saadat, Ahmad (Supervisor) ; Mohammadi, Mohammad Reza (Supervisor)
    Abstract
    Platelet nanoparticles could dramatically decrease permeability of polymeric film where increase considerably its physical -mechanical properties. Bio based (Biodegradable) polymeric materials such as starch based polymeric films show very weak mechanical and high oxygen and water vapor permeability. Graphene oxide (GO) could increase mechanical properties of starch based polymer where decrease its permeability dramatically. Addition of chitosan also could increase antibacterial and antifungal of films and decrease permeability of films considerably. In this research nanocomposite of Starch/Chitosan/GO films have been prepared by solution method and its morphology, permeability, physical... 

    Sttudy of Effective Parameters on Biodegradation of Organic Waste

    , M.Sc. Thesis Sharif University of Technology Malool, Mohamad Ebrahim (Author) ; Shayegan, Jalal (Supervisor)
    Abstract
    With the increasing population and expanding urbanization and changing consumption patterns and relative prosperity increases, the amount of waste generated has increased significantly. So the municipal waste management as one of the challenges that lie ahead for municipal and state has become. Therefore, different approaches have been proposed to solve this problem. In the past government used landfill or incineration program for waste management. Given the risks to the environment and human health are two ways to create and large amount of biodegradable solid waste, composting seems to be good approach for waste management. With using the process on an industrial scale by municipalities,... 

    Design of Scaffolds with Multi-scale Engineered Microchannels

    , M.Sc. Thesis Sharif University of Technology Mollajavadi, Mohammad Yasin (Author) ; Saadatmand, Maryam (Supervisor)
    Abstract
    Building complex and functional tissues and organs is very challenging. One of the challenges is building an efficient network of blood vessels that can be used to facilitate the transport of nutrients and oxygen to the host. In addition to using channels for oxygen supply, another solution is to use oxygen-carrying materials. In this study, in addition to designing and simulating scaffolds with multi-scale microchannels, calcium peroxide was used to release oxygen and eliminate hypoxia in the scaffold. Here alginate is used as the main material for scaffolding. In an attempt to build a scaffold using a bio-printer, pluronic acid was also used as a sacrificial material to create canals.... 

    Improving Mechanical and Biological Behavior of Mg-2ag Alloy: Effects of Y Addition, Heat Treatment and Coating

    , M.Sc. Thesis Sharif University of Technology Mohammadi Zerankeshi, Meysam (Author) ; Alizadeh, Reza (Supervisor)
    Abstract
    Biodegradable Mg-Ag alloys are promising implants for bone tissue regeneration due to their unique ability to reduce inflammation and infection after implantation with the presence of silver. However, their biological performance, including biodegradability, needs further improvement. In this regard, the effects of adding yttrium element, solution heat treatment and coating on the microstructure, biodegradability behavior, mechanical properties and biological characteristics of a cast Mg-2Ag alloy were studied. Addition of 1 wt% of yttrium caused grain refinement in the microstructure and solid solution heat treatment led to a significant decrease in the volume fraction of secondary phases.... 

    Investigation of Highly Concentrated Phenolic Wastewater Treatment in a Membrane Biological Reactor (MBR), and Evaluation of Furfural upon Phenol Biodegradation by an Acclimated Activated Sludge

    , M.Sc. Thesis Sharif University of Technology Mohseni, Mojtaba (Author) ; Borghei, Mehdi (Supervisor)
    Abstract
    Phenolic compounds are hazardous pollutants that are released into environment through wastewater discharges from variety of industries. Although good biodegradability has been reported at low concentrations, but at higher concentrations phenols are known to be antibacterial. In this study the Membrane Biological Reactor (MBR) with submerged hallow fiber membrane was operated at 25±2 ºC and pH=7.5±0.5 to treat a synthetic wastewater containing high phenol concentration (up to 5.9 g/l). Removal efficiency of phenol and COD were evaluated at four various “Hydraulic Retention Times” (HRT) of 24, 12, 8 and 4 hours. To test the tolerance of the bioreactor to phenol concentration various loading... 

    Immobilization of Laccase Using Metal-Organic Framework and its Application in Micropollutant Removal

    , M.Sc. Thesis Sharif University of Technology Ghassemi, Raman (Author) ; Yaghmaei, Soheila (Supervisor) ; Ghobadinejad, Zahra (Supervisor)
    Abstract
    Nowadays, micropollutants present in aquatic environments posses a significant threat to the well-being and health of human beings. Various physicochemical and advanced approaches have been proposed to confront these hazards. In recent years, biological treatment methods have gained great interest for their green approach. One of these biological treatment options is the treatment of polluted waters by enzymes. Enzymatic treatment of micropollutants can be achieved by oxidoreductase enzymes. One of the most important and widely used oxidoreductase enzymes employed for water treatment is Laccase. However, enzyme immobilization is employed to counter the drawbacks of using enzymes, such as... 

    Fabrication and Assessment of Physical and Mechanical Properties of Thermoplastic Starch/ Cellulose Nanofibers Biocomposites

    , M.Sc. Thesis Sharif University of Technology Ghasemi, Amir (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    Due to the negative effects of conventional plastics on the environment, especially in the packaging sector, extensive efforts have been put to replace these polymers with biodegradable polymers. Starch is one of the biodegradable polymers which has attracted a lot of attentions because of low cost and good process ability. Native starch has the form of granule and can be processed to a continuous phase after gelatinization in the presence of a plasticizer. The resulting material is a biodegradable plastic-like material called thermoplastic starch (TPS) which is processed using conventional technologies, but suffers from low mechanical properties and high hydrophilicity. Addition of... 

    Poly (Lactic acid) Synthesis through Polycondensation Method and Optimized Reaction Time

    , M.Sc. Thesis Sharif University of Technology Farzad, Ashkan (Author) ; Frounchi, Masoud (Supervisor) ; Dadbin, Sousan (Supervisor)
    Abstract
    Poly (Lacticacid) belongs to the family of aliphatic polyesters. PLA can be made from annually renewable resources to yield articles for use in either the industrial packaging field or the biocompatible /bioabsorbable medical device market. Production of PLA through polycondensation in an industrial way was the aim of this project. In order to have the appropriate reaction conditions a steel reactor was designed and constructed. Feasibilty of PLA production in the constructed reactor was investigated and the product was analyzed, using H-NMR and FT-IR spectrum analysis. The average molecular weight was measured by GPC and ubbelohde viscometery method. Studies have shown that oligomerization... 

    Molecular Dynamics Simulation of Ionic Liquids and Investigation of their Interactions with Nanoclusteres in Different Molecular Solvents using Quantum Chemistry Calculations

    , Ph.D. Dissertation Sharif University of Technology Fakhraee, Mostafa (Author) ; Gholami, Mohammad Reza (Supervisor)
    Abstract
    Thermodynamic, structural and transport properties of ester-functionalized ionic liquids (ILs), also kwon as biodegradable ILs, were extensively investigated using molecular dynamic simulation. Thermodynamics features of this class of ILs were computed from 1.5 ns simulations. Nanoscale organization of these ILs was evaluated by computing several structural properties. The formations of micelle-like nanostructures were disclosed from the achieved results of structural properties. The obtained results were also confirmed by calculating transport traits. These results suggest that the incorporation of an ester group into the alkyl side chain of the cation promotes the cation–anion interionic...