Loading...
Search for: biophotonic
0.009 seconds

    Design and Implementation of Near Field Excitation System for Spectroscopy of Biological Species

    , Ph.D. Dissertation Sharif University of Technology Sasanpour, Pezhman (Author) ; Rashidian, Bizhan (Supervisor) ; Vossoughi, Manouchehr (Supervisor) ; Shahrokhian, Saeed (Co-Advisor)
    Abstract
    The main goal of this project is analysis, design and implementation of scanning near field optical system for detection of biological species. The activities fall in two main category. Theoretical and experimental. In theoretical part, after studying different models describing near field interaction, we have developed software for computationally analysis of nonlinear interaction of light with nanostructures, considering third order nonlinear susceptibility and dispersion behavior of permittivity for metallic nanostructures. The software implements three dimensional finite difference time domain (FDTD) method for analysis of interaction of electromagnetic wave with matter. In developed... 

    Diatoms with invaluable applications in nanotechnology, biotechnology, and biomedicine: Recent advances

    , Article ACS Biomaterials Science and Engineering ; Volume 7, Issue 7 , 2021 , Pages 3053-3068 ; 23739878 (ISSN) Rabiee, N ; Khatami, M ; Jamalipour Soufi, G ; Fatahi, Y ; Iravani, S ; Varma, R. S ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Diatoms are unicellular microalga found in soil and almost every aquatic environment (marine and fresh water). Biogenic silica and diatoms are attractive for biotechnological and industrial applications, especially in the field of biomedicine, industrial/synthetic manufacturing processes, and biomedical/pharmaceutical sciences. Deposition of silica by diatoms allows them to create micro- or nanoscale structures which may be utilized in nanomedicine and especially in drug/gene delivery. Diatoms with their unique architectures, good thermal stability, suitable surface area, simple chemical functionalization/modification procedures, ease of genetic manipulations, optical/photonic... 

    Universal in vivo textural model for human skin based on optical coherence tomograms

    , Article Scientific Reports ; Volume 7, Issue 1 , 2017 ; 20452322 (ISSN) Adabi, S ; Hosseinzadeh, M ; Noei, S ; Conforto, S ; Daveluy, S ; Clayton, A ; Mehregan, D ; Nasiriavanaki, M ; Sharif University of Technology
    Abstract
    Currently, diagnosis of skin diseases is based primarily on the visual pattern recognition skills and expertise of the physician observing the lesion. Even though dermatologists are trained to recognize patterns of morphology, it is still a subjective visual assessment. Tools for automated pattern recognition can provide objective information to support clinical decision-making. Noninvasive skin imaging techniques provide complementary information to the clinician. In recent years, optical coherence tomography (OCT) has become a powerful skin imaging technique. According to specific functional needs, skin architecture varies across different parts of the body, as do the textural...