Loading...
Search for: biosensing-techniques
0.006 seconds
Total 31 records

    Amperometric sulfide detection using Coprinus cinereus peroxidase immobilized on screen printed electrode in an enzyme inhibition based biosensor

    , Article Biosensors and Bioelectronics ; Volume 35, Issue 1 , 2012 , Pages 297-301 ; 09565663 (ISSN) Savizi, I. S. P ; Kariminia, H. R ; Ghadiri, M ; Roosta Azad, R ; Sharif University of Technology
    2012
    Abstract
    In the present work, an amperometric inhibition biosensor for the determination of sulfide has been fabricated by immobilizing Coprinus cinereus peroxidase (CIP) on the surface of screen printed electrode (SPE). Chitosan/acrylamide was applied for immobilization of peroxidase on the working electrode. The amperometric measurement was performed at an applied potential of -150. mV versus Ag/AgCl with a scan rate of 100. mV in the presence of hydroquinone as electron mediator and 0.1. M phosphate buffer solution of pH 6.5. The variables influencing the performance of sensor including the amount of substrate, mediator concentration and electrolyte pH were optimized. The determination of sulfide... 

    A novel model for predicting bioelectrochemical performance of microsized-MFCs by incorporating bacterial chemotaxis parameters and simulation of biofilm formation

    , Article Bioelectrochemistry ; Volume 122 , 2018 , Pages 51-60 ; 15675394 (ISSN) Kalantar, M ; Mardanpour, M. M ; Yaghmaei, S ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Bacterial transport parameters play a fundamental role in microbial population dynamics, biofilm formation and bacteria dispersion. In this study, the novel model was extended based on the capability of microsized microbial fuel cells (MFCs) as amperometric biosensors to predict the cells' chemotactic and bioelectrochemical properties. The model prediction results coincide with the experimental data of Shewanella oneidensis and chemotaxis mutant of P. aeruginosa bdlA and pilT strains, indicating the complementary role of numerical predictions for bioscreening applications of microsized MFCs. Considering the general mechanisms for electron transfer, substrate biodegradation, microbial growth... 

    An ultrasensitive label free human papilloma virus DNA biosensor using gold nanotubes based on nanoporous polycarbonate in electrical alignment

    , Article Analytica Chimica Acta ; Volume 1048 , 2019 , Pages 31-41 ; 00032670 (ISSN) Shariati, M ; Ghorbani, M ; Sasanpour, P ; Karimizefreh, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    An impedimetric human papilloma virus (HPV) DNA biosensor based on gold nanotubes (AuNTs) in label free detection was materialized. The AuNTs decorated nanoporous polycarbonate (AuNTs-PC) template as biosensor electrode was fabricated by electrodeposition method. The single strand DNA (ss-DNA) probe was covalently immobilized onto the AuNTs-PC electrode. The hybridization of target sequences with the ss-DNA probe was observed by the electrochemical impedance spectroscopy (EIS). The biosensor showed high selectivity and could differentiate between the complementary, mismatch and non-complementary DNA sequences. The EIS measurements were matched to Randle's equivalent circuit. The... 

    A selective chemiresistive sensor for the cancer-related volatile organic compound hexanal by using molecularly imprinted polymers and multiwalled carbon nanotubes

    , Article Microchimica Acta ; Volume 186, Issue 3 , 2019 ; 00263672 (ISSN) Janfaza, S ; Banan Nojavani, M ; Nikkhah, M ; Alizadeh, T ; Esfandiar, A ; Ganjali, M. R ; Sharif University of Technology
    Springer-Verlag Wien  2019
    Abstract
    A chemiresistive sensor is described for the lung cancer biomarker hexanal. A composite consisting of molecularly imprinted polymer nanoparticles and multiwalled carbon nanotubes was used in the sensor that is typically operated at a voltage of 4 V and is capable of selectively sensing gaseous hexanal at room temperature. It works in the 10 to 200 ppm concentration range and has a 10 ppm detection limit (at S/N = 3). The sensor signal recovers to a value close to its starting value without the need for heating even after exposure to relatively high levels of hexanal  

    Bioactive hybrid metal-organic framework (MOF)-based nanosensors for optical detection of recombinant SARS-CoV-2 spike antigen

    , Article Science of the Total Environment ; Volume 825 , 2022 ; 00489697 (ISSN) Rabiee, N ; Fatahi, Y ; Ahmadi, S ; Abbariki, N ; Ojaghi, A ; Rabiee, M ; Radmanesh, F ; Dinarvand, R ; Bagherzadeh, M ; Mostafavi, E ; Ashrafizadeh, M ; Makvandi, P ; Lima, E. C ; Saeb, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Fast, efficient, and accurate detection of SARS-CoV-2 spike antigen is pivotal to control the spread and reduce the mortality of COVID-19. Nevertheless, the sensitivity of available nanobiosensors to detect recombinant SARS-CoV-2 spike antigen seems insufficient. As a proof-of-concept, MOF-5/CoNi2S4 is developed as a low-cost, safe, and bioactive hybrid nanostructure via the one-pot high-gravity protocol. Then, the porphyrin, H2TMP, was attached to the surface of the synthesized nanomaterial to increase the porosity for efficient detection of recombinant SARS-CoV-2 spike antigen. AFM results approved roughness in different ranges, including 0.54 to 0.74 μm and 0.78 to ≈0.80 μm, showing good... 

    Cell "vision": Complementary factor of protein corona in nanotoxicology

    , Article Nanoscale ; Volume 4, Issue 17 , 2012 , Pages 5461-5468 ; 20403364 (ISSN) Mahmoudi, M ; Saeedi-Eslami, S. N ; Shokrgozar, M. A ; Azadmanesh, K ; Hassanlou, M ; Kalhor, H. R ; Burtea, C ; Rothen Rutishauser, B ; Laurent, S ; Sheibani, S ; Vali, H ; Sharif University of Technology
    RSC  2012
    Abstract
    Engineered nanoparticles are increasingly being considered for use as biosensors, imaging agents and drug delivery vehicles. Their versatility in design and applications make them an attractive proposition for new biological and biomedical approaches. Despite the remarkable speed of development in nanoscience, relatively little is known about the interaction of nanoscale objects with living systems. In a biological fluid, proteins associate with nanoparticles, and the amount and the presentation of the proteins on their surface could lead to a different in vivo response than an uncoated particle. Here, in addition to protein adsorption, we are going to introduce concept of cell "vision",... 

    Comparison between electrochemical and photoelectrochemical detection of dopamine based on titania-ceria-graphene quantum dots nanocomposite

    , Article Biosensors and Bioelectronics ; Volume 151 , 2020 Ahmadi, N ; Bagherzadeh, M ; Nemati, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study, titania-ceria-graphene quantum dot (TC-GQD) nanocomposite was synthesized by hydrothermal method for the first time. The prepared nanomaterials were characterized by XRD, FTIR dynamic light scattering (DLS), FESEM, HRTEM, and EDX spectroscopy along with elemental mapping. The synergistic effect of the nanocomposite components was studied by diffuse reflectance spectroscopy (DRS) and electrical conductivity meter. The results showed that band gap of TC-GQD nanocomposite was shifted to visible lights relative to its components (1.3 eV), and electrical conductivity of the sample was significant increased to 89.5 μS cm−1. After chemical and physical characterization, prepared new... 

    Design and fabrication of an electrochemical aptasensor using Au nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite for rapid and sensitive detection of Staphylococcus aureus

    , Article Bioelectrochemistry ; Volume 123 , 2018 , Pages 70-76 ; 15675394 (ISSN) Ranjbar, S ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Since that pathogenic bacteria are major threats to human health, this paper describes the fabrication of an effective and durable sensing platform based on gold nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite (AuNPs/CNPs/CNFs) at the surface of glassy carbon electrode for sensitive and selective detection of Staphylococcus aureus (S. aureus). The AuNPs/CNPs/CNFs nanocomposite with the high surface area, excellent conductivity, and good biocompatibility was used for self-assembled of the thiolated specific S. aureus aptamer as a sensing element. The surface morphology of AuNPs/CNPs/CNFs nanocomposite was characterized with field emission scanning electron microscopy... 

    Design of an effective piezoelectric microcantilever biosensor for rapid detection of COVID-19

    , Article Journal of Medical Engineering and Technology ; Volume 45, Issue 6 , 2021 , Pages 423-433 ; 03091902 (ISSN) Kabir, H ; Merati, M ; Abdekhodaie, M. J ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    Acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also called COVID-19, is one of the most contagious viruses resulting in a progressive pandemic. Since specific antiviral treatments have not been developed yet and its fatal rate is almost high, early and fast detection is critical for controlling the outbreak. In this study, a piezoelectric microcantilever biosensor has been designed for detecting COVID-19 samples directly without requiring preparation steps. The biosensor acts as a transducer and is coated with the related antibody. When the SARS-CoV-2 antigens adsorbed on the microcantilever top surface through their spike proteins, a surface stress due to the mass change would be... 

    Direct growth of metal-organic frameworks thin film arrays on glassy carbon electrode based on rapid conversion step mediated by copper clusters and hydroxide nanotubes for fabrication of a high performance non-enzymatic glucose sensing platform

    , Article Biosensors and Bioelectronics ; Volume 112 , 2018 , Pages 100-107 ; 09565663 (ISSN) Shahrokhian, S ; Khaki Sanati, E ; Hosseini, H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The direct growth of self-supported metal-organic frameworks (MOFs) thin film can be considered as an effective strategy for fabrication of the advanced modified electrodes in sensors and biosensor applications. However, most of the fabricated MOFs-based sensors suffer from some drawbacks such as time consuming for synthesis of MOF and electrode making, need of a binder or an additive layer, need of expensive equipment and use of hazardous solvents. Here, a novel free-standing MOFs-based modified electrode was fabricated by the rapid direct growth of MOFs on the surface of the glassy carbon electrode (GCE). In this method, direct growth of MOFs was occurred by the formation of vertically... 

    Early cancer detection in blood vessels using mobile nanosensors

    , Article IEEE Transactions on Nanobioscience ; Volume 18, Issue 2 , 2019 , Pages 103-116 ; 15361241 (ISSN) Mosayebi, R ; Ahmadzadeh, A ; Wicke, W ; Jamali, V ; Schober, R ; Nasiri Kenari, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In this paper, we propose using mobile nanosensors (MNSs) for early stage anomaly detection. For concreteness, we focus on the detection of cancer cells located in a particular region of a blood vessel. These cancer cells produce and emit special molecules, so-called biomarkers, which are symptomatic for the presence of anomaly, into the cardiovascular system. Detection of cancer biomarkers with conventional blood tests is difficult in the early stages of a cancer due to the very low concentration of the biomarkers in the samples taken. However, close to the cancer cells, the concentration of the cancer biomarkers is high. Hence, detection is possible if a sensor with the ability to detect... 

    Efficient protein immobilization on polyethersolfone electrospun nanofibrous membrane via covalent binding for biosensing applications

    , Article Materials Science and Engineering C ; Volume 58 , 2016 , Pages 586-594 ; 09284931 (ISSN) Mahmoudifard, M ; Soudi, S ; Soleimani, M ; Hosseinzadeh, S ; Esmaeili, E ; Vossoughi, M ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this paper we introduce novel strategy for antibody immobilization using high surface area electrospun nanofibrous membrane based on ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling chemistry. To present the high performance of proposed biosensors, anti-staphylococcus enterotoxin B (anti-SEB) was used as a model to demonstrate the utility of our proposed system. Polymer solution of polyethersolfone was used to fabricate fine nanofibrous membrane. Moreover, industrial polyvinylidene fluoride membrane and conventional microtiter plate were also used to compare the efficiency of antibody immobilization. Scanning electron microscopy images were taken to... 

    Electrochemical prostate-specific antigen biosensors based on electroconductive nanomaterials and polymers

    , Article Clinica Chimica Acta ; Volume 516 , 2021 , Pages 111-135 ; 00098981 (ISSN) Dowlatshahi, S ; Abdekhodaie, M. J ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Prostate cancer (PCa), the second most malignant neoplasm in men, is also the fifth leading cause of cancer-related deaths in men globally. Unfortunately, this malignancy remains largely asymptomatic until late-stage emergence when treatment is limited due to the lack of effective metastatic PCa therapeutics. Due to these limitations, early PCa detection through prostate-specific antigen (PSA) screening has become increasingly important, resulting in a more than 50% decrease in mortality. Conventional assays for PSA detection, such as enzyme-linked immunosorbent assay (ELISA), are labor intensive, relatively expensive, operator-dependent and do not provide adequate sensitivity.... 

    Fabrication of a modified electrode based on Fe3 O4 NPs/MWCNT nanocomposite: Application to simultaneous determination of guanine and adenine in DNA

    , Article Bioelectrochemistry ; Volume 86 , 2012 , Pages 78-86 ; 15675394 (ISSN) Shahrokhian, S ; Rastgar, S ; Amini, M. K ; Adeli, M ; Sharif University of Technology
    Abstract
    Multi-walled carbon nanotubes decorated with Fe 3O 4 nanoparticles (Fe 3O 4NPs/MWCNT) were prepared and used to construct a novel biosensor for the simultaneous detection of adenine and guanine. The direct electro-oxidation of adenine and guanine on the modified electrode were investigated by linear sweep voltammetry. The results indicate a remarkable increase in the oxidation peak currents together with negative shift in the oxidation peak potentials for both adenine and guanine, in comparison to the bare glassy carbon electrode (GCE). The surface morphology and nature of the composite film deposited on GCE were characterized by transmission electron microscopy, atomic force microscopy,... 

    Fabrication of a sensitive and fast response electrochemical glucose sensing platform based on co-based metal-organic frameworks obtained from rapid in situ conversion of electrodeposited cobalt hydroxide intermediates

    , Article Talanta ; Volume 210 , 2020 Shahrokhian, S ; Ezzati, M ; Hosseini, H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, for the first time, we reported a fast and facile three-step in situ strategy for direct controllable growth of the Co3(BTC)2 MOFs thin films on the GCE, through the rapid conversion of the electrodeposited Co(OH)2 nano-flakes on rGO/GCE, to crystalline rectangular bar-shape structures of MOFs. X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and elemental mapping analysis used to the structural and morphological characterization of the well-synthesized MOFs. The as-prepared Co3(BTC)2 MOFs were used to construct a non-enzymatic sensing platform for determining the glucose... 

    Fabrication of sensitive glutamate biosensor based on vertically aligned CNT nanoelectrode array and investigating the effect of CNTs density on the electrode performance

    , Article Analytical Chemistry ; Volume 84, Issue 14 , June , 2012 , Pages 5932-5938 ; 00032700 (ISSN) Gholizadeh, A ; Shahrokhian, S ; Iraji Zad, A ; Mohajerzadeh, S ; Vosoughi, M ; Darbari, S ; Koohsorkhi, J ; Mehran, M ; Sharif University of Technology
    2012
    Abstract
    In this report, the fabrication of vertically aligned carbon nanotube nanoelectrode array (VACNT-NEA) by photolithography method is presented. Electrochemical impedance spectroscopy as well as cyclic voltammetry was performed to characterize the arrays with respect to different diffusion regimes. The fabricated array illustrated sigmoidal cyclic voltammogram with steady state current dominated by radial diffusion. The fabricated VACNT-NEA and high density VACNTs were employed as electrochemical glutamate biosensors. Glutamate dehydrogenase is covalently attached to the tip of CNTs. The voltammetric biosensor, based on high density VACNTs, exhibits a sensitivity of 0.976 mA mM-1 cm-2 in the... 

    Graphene: Promises, facts, opportunities, and challenges in nanomedicine

    , Article Chemical Reviews ; Volume 113, Issue 5 , 2013 , Pages 3407-3424 ; 00092665 (ISSN) Mao, H. Y ; Laurent, S ; Chen, W ; Akhavan, O ; Imani, M ; Ashkarran, A. A ; Mahmoudi, M ; Sharif University of Technology
    2013
    Abstract
    Graphene, a two-dimensional (2D) sheet of sp2-hybridized carbon atoms packed into a honeycomb lattice, has led to an explosion of interest in the field of materials science, physics, chemistry, and biotechnology since the few-layers graphene (FLG) flakes were isolated from graphite in 2004. For an extended search, derivatives of nanomedicine such as biosensing, biomedical, antibacterial, diagnosis, cancer and photothermal therapy, drug delivery, stem cell, tissue engineering, imaging, protein interaction, DNA, RNA, toxicity, and so on were also added. Since carbon nanotubes are normally described as rolled-up cylinders of graphene sheets and the controllable synthesis of nanotubes is well... 

    High-performance enzyme-free glucose sensor with Co-Cu nanorod arrays on Si substrates

    , Article Recent Patents on Biotechnology ; Volume 12, Issue 2 , 2018 , Pages 126-133 ; 18722083 (ISSN) Shirinzadeh, H ; Yazdanpanah, A ; Karponis, D ; Aghabarari, B ; Tahmasbi, M ; Seifalian, A ; Mozafari, M ; Sharif University of Technology
    Bentham Science Publishers B.V  2018
    Abstract
    Background: Glucose sensors have been extensively researched in patent studies and manufactured a tool for clinical diabetes diagnosis. Although some kinds of electrochemical enzymatic glucose sensors have been commercially successful, there is still room for improvement, in selectivity and reliability of these sensors. Because of the intrinsic disadvantages of enzymes, such as high fabrication cost and poor stability, non-enzymatic glucose sensors have recently been promoted as next generation diagnostic tool due to their relatively low cost, high stability, prompt response, and accuracy. Objective: In this research, a novel free standing and binder free non-enzymatic electrochemical sensor... 

    Label-free electrochemical microfluidic biosensors: futuristic point-of-care analytical devices for monitoring diseases

    , Article Microchimica Acta ; Volume 189, Issue 7 , 2022 ; 00263672 (ISSN) Ebrahimi, G ; Samadi Pakchin, P ; Shamloo, A ; Mota, A ; de la Guardia, M ; Omidian, H ; Omidi, Y ; Sharif University of Technology
    Springer  2022
    Abstract
    The integration of microfluidics with electrochemical analysis has resulted in the development of single miniaturized detection systems, which allows the precise control of sample volume with multianalyte detection capability in a cost- and time-effective manner. Microfluidic electrochemical sensing devices (MESDs) can potentially serve as precise sensing and monitoring systems for the detection of molecular markers in various detrimental diseases. MESDs offer several advantages, including (i) automated sample preparation and detection, (ii) low sample and reagent requirement, (iii) detection of multianalyte in a single run, (iv) multiplex analysis in a single integrated device, and (v)... 

    Label-Free real-time detection of HBsAg using a QCM immunosensor

    , Article Clinical Laboratory ; Volume 68, Issue 4 , 2022 , Pages 707-720 ; 14336510 (ISSN) Saffari, Z ; Ghavidel, A ; Ahangari Cohan, R ; Hamidi Fard, M ; Khoobi, M ; Aghasadeghi, M ; Norouzian, D ; Sharif University of Technology
    Verlag Klinisches Labor GmbH  2022
    Abstract
    Background: Hepatitis B virus surface antigen (HBsAg) is an important protein in both diagnosis and prevention of hepatitis B infection. In the current study, a piezoelectric immunosensor based on antibody-antigen interaction was designed to detect HBsAg. A quartz crystal microbalance system was employed to detect antibody-antigen interaction. Methods: At first, an oscillator was designed to measure the resonant frequency affected by the reactants using IC 74LVC1GX04. Antibody against HBsAg was immobilized on 10 MHz AT-cut quartz crystal. The surface modifications were monitored by atomic force microscopy (AFM) and contact angle measurements. Different concentrations of antibody were used...