Loading...
Search for: blood-vessel-wall
0.004 seconds

    Fluid–structure interaction simulation of a cerebral aneurysm: effects of endovascular coiling treatment and aneurysm wall thickening

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 74 , 2017 , Pages 72-83 ; 17516161 (ISSN) Shamloo, A ; Nejad, M. A ; Saeedi, M ; Sharif University of Technology
    Abstract
    In the present study, we investigate the effect of the hemodynamic factors of the blood flow on the cerebral aneurysms. To this end, a hypothetical geometry of the aneurysm in the circle of Willis, located in the bifurcation point of the anterior cerebral artery (ACA) and anterior communicating artery (ACoA) is modeled in a three-dimensional manner. Three cases are chosen in the current study: an untreated thin wall (first case), untreated thick wall (second case), and a treated aneurysm (third case). The effect of increasing the aneurysm wall thickness on the deformation and stress distribution of the walls are studied. The obtained results showed that in the second case, a reduction in the... 

    Numerical study of the effect of vascular bed on heat transfer during high intensity focused ultrasound (HIFU) ablation of the liver tumor

    , Article Journal of Thermal Biology ; Volume 86 , 2019 ; 03064565 (ISSN) Mohammadpour, M ; Firoozabadi, B ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this study, the influence of vascular bed comprising terminal arterial branches on heat transfer in a liver tumor exposed to high intensity focused ultrasound (HIFU) is studied numerically. Also, the effect of vascular density on temperature distribution is investigated. A coupled set of acoustics, thermal, and fluid models is used to calculate the temperature distribution in the liver. The numerical model is established based on the Westervelt and bioheat equations along with the Navier-Stokes equations. Moreover, the acoustic streaming effect is included with Newtonian and non-Newtonian flow assumptions. It is found that in a vascular bed comprising terminal arterial branches, the... 

    Healthy and diseasedin vitromodels of vascular systems

    , Article Lab on a Chip ; Volume 21, Issue 4 , 2021 , Pages 641-659 ; 14730197 (ISSN) Hosseini, V ; Mallone, A ; Nasrollahi, F ; Ostrovidov, S ; Nasiri, R ; Mahmoodi, M ; Haghniaz, R ; Baidya, A ; Salek, M. M ; Darabi, M. A ; Orive, G ; Shamloo, A ; Dokmeci, M. R ; Ahadian, S ; Khademhosseini, A ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Irregular hemodynamics affects the progression of various vascular diseases, such atherosclerosis or aneurysms. Despite the extensive hemodynamics studies on animal models, the inter-species differences between humans and animals hamper the translation of such findings. Recent advances in vascular tissue engineering and the suitability ofin vitromodels for interim analysis have increased the use ofin vitrohuman vascular tissue models. Although the effect of flow on endothelial cell (EC) pathophysiology and EC-flow interactions have been vastly studied in two-dimensional systems, they cannot be used to understand the effect of other micro- and macro-environmental parameters associated with...