Loading...
Search for: blood-vessels
0.01 seconds
Total 65 records

    3D Bioprinting of oxygenated cell-laden gelatin methacryloyl constructs

    , Article Advanced Healthcare Materials ; Volume 9, Issue 15 , 2020 Erdem, A ; Darabi, M. A ; Nasiri, R ; Sangabathuni, S ; Ertas, Y. N ; Alem, H ; Hosseini, V ; Shamloo, A ; Nasr, A. S ; Ahadian, S ; Dokmeci, M. R ; Khademhosseini, A ; Ashammakhi, N ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Cell survival during the early stages of transplantation and before new blood vessels formation is a major challenge in translational applications of 3D bioprinted tissues. Supplementing oxygen (O2) to transplanted cells via an O2 generating source such as calcium peroxide (CPO) is an attractive approach to ensure cell viability. Calcium peroxide also produces calcium hydroxide that reduces the viscosity of bioinks, which is a limiting factor for bioprinting. Therefore, adapting this solution into 3D bioprinting is of significant importance. In this study, a gelatin methacryloyl (GelMA) bioink that is optimized in terms of pH and viscosity is developed. The improved rheological properties... 

    A comparative study of collagen matrix density effect on endothelial sprout formation using experimental and computational approaches

    , Article Annals of Biomedical Engineering ; Volume 44, Issue 4 , 2016 , Pages 929-941 ; 00906964 (ISSN) Shamloo, A ; Mohammadaliha, N ; Heilshorn, S. C ; Bauer, A. L ; Sharif University of Technology
    Abstract
    A thorough understanding of determining factors in angiogenesis is a necessary step to control the development of new blood vessels. Extracellular matrix density is known to have a significant influence on cellular behaviors and consequently can regulate vessel formation. The utilization of experimental platforms in combination with numerical models can be a powerful method to explore the mechanisms of new capillary sprout formation. In this study, using an integrative method, the interplay between the matrix density and angiogenesis was investigated. Owing the fact that the extracellular matrix density is a global parameter that can affect other parameters such as pore size, stiffness,... 

    A mechanical model for morphological response of endothelial cells under combined wall shear stress and cyclic stretch loadings

    , Article Biomechanics and Modeling in Mechanobiology ; Volume 15, Issue 5 , 2016 , Pages 1229-1243 ; 16177959 (ISSN) Pakravan, H. A ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
    Springer Verlag 
    Abstract
    The shape and morphology of endothelial cells (ECs) lining the blood vessels are a good indicator for atheroprone and atheroprotected sites. ECs of blood vessels experience both wall shear stress (WSS) and cyclic stretch (CS). These mechanical stimuli influence the shape and morphology of ECs. A few models have been proposed for predicting the morphology of ECs under WSS or CS. In the present study, a mathematical cell population model is developed to simulate the morphology of ECs under combined WSS and CS conditions. The model considers the cytoskeletal filaments, cell–cell interactions, and cell–extracellular matrix interactions. In addition, the reorientation and polymerization of... 

    A multiscale approach for determining the morphology of endothelial cells at a coronary artery

    , Article International Journal for Numerical Methods in Biomedical Engineering ; Volume 33, Issue 12 , 2017 ; 20407939 (ISSN) Pakravan, H. A ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
    Abstract
    The morphology of endothelial cells (ECs) may be an indication for determining atheroprone sites. Until now, there has been no clinical imaging technique to visualize the morphology of ECs in the arteries. The present study introduces a computational technique for determining the morphology of ECs. This technique is a multiscale simulation consisting of the artery scale and the cell scale. The artery scale is a fluid-structure interaction simulation. The input for the artery scale is the geometry of the coronary artery, that is, the dynamic curvature of the artery due to the cardiac motion, blood flow, blood pressure, heart rate, and the mechanical properties of the blood and the arterial... 

    A multi-scale model for determining the effects of pathophysiology and metabolic disorders on tumor growth

    , Article Scientific Reports ; Volume 10, Issue 1 , 20 February , 2020 Nikmaneshi, M. R ; Firoozabadi, B ; Mozafari, A ; Munn, L. L ; Sharif University of Technology
    Nature Research  2020
    Abstract
    The search for efficient chemotherapy drugs and other anti-cancer treatments would benefit from a deeper understanding of the tumor microenvironment (TME) and its role in tumor progression. Because in vivo experimental methods are unable to isolate or control individual factors of the TME and in vitro models often do not include all the contributing factors, some questions are best addressed with systems biology mathematical models. In this work, we present a new fully-coupled, agent-based, multi-scale mathematical model of tumor growth, angiogenesis and metabolism that includes important aspects of the TME spanning subcellular-, cellular- and tissue-level scales. The mathematical model is... 

    Analysis of the effect of ageing on rising edge characteristics of the photoplethysmogram using a modified windkessel model

    , Article Cardiovascular Engineering ; Volume 7, Issue 4 , 2007 , Pages 172-181 ; 15678822 (ISSN) Zahedi, E ; Chellappan, K ; Mohd Ali, M. A ; Singh, H ; Sharif University of Technology
    2007
    Abstract
    Ageing is one of the main contributing factors towards increasing arterial stiffness, leading to changes in peripheral pulses propagation. Therefore the characteristics of the photoplethysmogram (PPG) pulse, especially the rising edge and peak position, are greatly affected. In this study, the PPG pulse rising edge and corresponding peak position have been investigated non-invasively in human subjects as a function of age. Fifteen healthy subjects were selected and grouped in five age intervals, from 20 to 59 years, based on their comparable systolic-diastolic blood pressure and PPG amplitude. As expected, the peripheral pulse shows a steep rise and early peak in younger subjects. With age,... 

    A neumerical method to investigate the effect of ultrasonic waves on capillary imbibition

    , Article 72nd European Association of Geoscientists and Engineers Conference and Exhibition 2010: A New Spring for Geoscience. Incorporating SPE EUROPEC 2010 ; Volume 5 , 2010 , Pages 3246-3250 ; 9781617386671 (ISBN) Keshavarzi, B ; Karimi, R ; Najafi, I ; Ghotbi, C ; Ghaedian, M ; Sharif University of Technology
    Society of Petroleum Engineers  2010
    Abstract
    A lot of laboratory experiments have been carried out to investigate each aspect of ultrasonic wave s role on fluid flow behavior through porous media. Despite all experimental works, little attention has been paid for modeling the ultrasonic wave influence on capillary imbibition, which is the main mechanism of production in fractured reservoirs. At this work the process of imbibition with and without applying ultrasonic waves is mathematically modeled by modification of piston-like model. In contrast to this model s assumption, in which mobility ratio is assumed to be constant, here permeability variation due to increase in water saturation is considered in numerical solution. To evaluate... 

    Aortic dissection is determined by specific shape and hemodynamic interactions

    , Article Annals of Biomedical Engineering ; Volume 50, Issue 12 , 2022 , Pages 1771-1786 ; 00906964 (ISSN) Williams, J. G ; Marlevi, D ; Bruse, J. L ; Nezami, F. R ; Moradi, H ; Fortunato, R. N ; Maiti, S ; Billaud, M ; Edelman, E. R ; Gleason, T. G ; Sharif University of Technology
    Springer  2022
    Abstract
    The aim of this study was to determine whether specific three-dimensional aortic shape features, extracted via statistical shape analysis (SSA), correlate with the development of thoracic ascending aortic dissection (TAAD) risk and associated aortic hemodynamics. Thirty-one patients followed prospectively with ascending thoracic aortic aneurysm (ATAA), who either did (12 patients) or did not (19 patients) develop TAAD, were included in the study, with aortic arch geometries extracted from computed tomographic angiography (CTA) imaging. Arch geometries were analyzed with SSA, and unsupervised and supervised (linked to dissection outcome) shape features were extracted with principal component... 

    Atheroprone sites of coronary artery bifurcation: Effect of heart motion on hemodynamics-dependent monocytes deposition

    , Article Computers in Biology and Medicine ; Volume 133 , 2021 ; 00104825 (ISSN) Biglarian, M ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Atherosclerosis as a common cardiovascular disease is a result of both adverse hemodynamics conditions and monocyte deposition within coronary arteries. It is known that the adhesion of monocytes on the arterial wall and their interaction with the vascular surface are one of the main parameters in the initiation and progression of atherosclerosis. In this work, hemodynamic parameters and monocyte deposition have been investigated in a 3D computational model of the Left Anterior Descending coronary artery (LAD) and its first diagonal branch (D1) under the heart motion. A one-way Lagrangian approach is performed to trace the monocyte particles under different blood flow regimes and heart motion... 

    Automatic segmentation, detection, and diagnosis of abdominal aortic aneurysm (AAA) using convolutional neural networks and hough circles algorithm

    , Article Cardiovascular Engineering and Technology ; Volume 10, Issue 3 , 2019 , Pages 490-499 ; 1869408X (ISSN) Mohammadi, S ; Mohammadi, M ; Dehlaghi, V ; Ahmadi, A ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    Purpose: An abdominal aortic aneurysm (AAA) is known as a cardiovascular disease involving localized deformation (swelling or enlargement) of aorta occurring between the renal and iliac arteries. AAA would jeopardize patients’ lives due to its rupturing risk, so prompt recognition and diagnosis of this disorder is vital. Although computed tomography angiography (CTA) is the preferred imaging modality used by radiologist for diagnosing AAA, computed tomography (CT) images can be used too. In the recent decade, there has been several methods suggested by experts in order to find a precise automated way to diagnose AAA without human intervention base on CT and CTA images. Despite great... 

    Autoregressive modeling of the photoplethysmogram AC signal amplitude changes after flow-mediated dilation in healthy and diabetic subjects

    , Article 2012 19th Iranian Conference of Biomedical Engineering, ICBME 2012 ; 2012 , Pages 170-173 ; 9781467331302 (ISBN) Amiri, M ; Zahedi, E ; Behnia, F ; Sharif University of Technology
    2012
    Abstract
    It is proved that the endothelial (artery inner lumen cells) function is associated with cardiovascular risk factors. Among all the common non-invasive methods employed in the research setting for assessing endothelial function, flow-mediated dilation is the most widely used one. This technique measures endothelial function by inducing reactive hyperemia using temporary arterial occlusion and measuring the resultant relative increase in blood vessel diameter via ultrasound. In this paper, the limitations associated with the ultrasound technique are overcome by using the photoplethysmogram (PPG) signal recorded during FMD. The correctness of this approach is investigated by modeling the AC... 

    A validated reduced-order dynamic model of nitric oxide regulation in coronary arteries

    , Article Computers in Biology and Medicine ; Volume 139 , 2021 ; 00104825 (ISSN) Moshfegh, H ; Tajeddini, F ; Pakravan, H. A ; Mahzoon, M ; Azadi Yazdi, E ; Bazrafshan Drissi, H ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Nitric Oxide (NO) provides myocardial oxygen demands of the heart during exercise and cardiac pacing and also prevents cardiovascular diseases such as atherosclerosis and platelet adhesion and aggregation. However, the direct in vivo measurement of NO in coronary arteries is still challenging. To address this matter, a mathematical model of dynamic changes of calcium and NO concentration in the coronary artery was developed for the first time. The model is able to simulate the effect of NO release in coronary arteries and its impact on the hemodynamics of the coronary arterial tree and also to investigate the vasodilation effects of arteries during cardiac pacing. For these purposes, flow... 

    Beat pressure and comparing it with ascending aorta pressure in normal and abnormal conditions

    , Article 4th European Conference of the International Federation for Medical and Biological Engineering, ECIFMBE 2008, Antwerp, 23 November 2008 through 27 November 2008 ; Volume 22 , 2008 , Pages 276-285 ; 16800737 (ISSN); 9783540892076 (ISBN) Ghasmelizadeh, O ; Mirzaee, M. R ; Firoozabadi, B ; Sajadi, B ; Zolfonoon, A ; Sharif University of Technology
    2008
    Abstract
    Lumped method (Electrical analogy) is a quick and easy way to model human cardiovascular system. In this paper Lumped method is used for simulating a complete model. It describes a 36-vessel model and cardiac system of human body with details that could show hydrodynamic parameters of cardiovascular system. Also this paper includes modeling of pulmonary, atrium, left and right ventricles with their equivalent circuits. Exact modeling of right and left ventricles pressure with division of ascending aorta into 27 segments increases the accuracy of our simulation. In this paper we show that a calculated pressure for aorta from our complex circuit is near to measured pressure by using advanced... 

    Bi-directional ConvLSTM U-net with densley connected convolutions

    , Article 17th IEEE/CVF International Conference on Computer Vision Workshop, ICCVW 2019, 27 October 2019 through 28 October 2019 ; 2019 , Pages 406-415 ; 9781728150239 (ISBN) Azad, R ; Asadi Aghbolaghi, M ; Fathy, M ; Escalera, S ; Computer Vision Foundation; IEEE ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In recent years, deep learning-based networks have achieved state-of-the-art performance in medical image segmentation. Among the existing networks, U-Net has been successfully applied on medical image segmentation. In this paper, we propose an extension of U-Net, Bi-directional ConvLSTM U-Net with Densely connected convolutions (BCDU-Net), for medical image segmentation, in which we take full advantages of U-Net, bi-directional ConvLSTM (BConvLSTM) and the mechanism of dense convolutions. Instead of a simple concatenation in the skip connection of U-Net, we employ BConvLSTM to combine the feature maps extracted from the corresponding encoding path and the previous decoding up-convolutional... 

    Bilayered heparinized vascular graft fabricated by combining electrospinning and freeze drying methods

    , Article Materials Science and Engineering C ; Volume 94 , 2019 , Pages 1067-1076 ; 09284931 (ISSN) Khayat Norouzi, S ; Shamloo, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Small diameter vascular grafts (<6 mm) are highly demanded for patients suffering from severe occluded arteries to be used as a bypass or substituted conduit. Fabricating a graft with appropriate structural, mechanical and cell growth properties which has simultaneously anti-thrombogenic trait is a challenge nowadays. Here, we proposed a bilayer heparinized vascular graft that can mimic the structural and mechanical characteristics close to those of the native coronary artery by combining electrospinning and freeze drying methods. In this study, the inner layer was made by co-electrospinning of synthetic polymer, poly-caprolactone (PCL) and the natural polymer, gelatin (Gel). Also, heparin... 

    Bilayered heparinized vascular graft fabricated by combining electrospinning and freeze drying methods

    , Article Materials Science and Engineering C ; Volume 94 , 2019 , Pages 1067-1076 ; 09284931 (ISSN) Khayat Norouzi, S ; Shamloo, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Small diameter vascular grafts (<6 mm) are highly demanded for patients suffering from severe occluded arteries to be used as a bypass or substituted conduit. Fabricating a graft with appropriate structural, mechanical and cell growth properties which has simultaneously anti-thrombogenic trait is a challenge nowadays. Here, we proposed a bilayer heparinized vascular graft that can mimic the structural and mechanical characteristics close to those of the native coronary artery by combining electrospinning and freeze drying methods. In this study, the inner layer was made by co-electrospinning of synthetic polymer, poly-caprolactone (PCL) and the natural polymer, gelatin (Gel). Also, heparin... 

    Computational simulation of non-Newtonian blood flow in carotid bifurcation for investigation the various rheological blood models

    , Article ASME 2007 International Mechanical Engineering Congress and Exposition, IMECE 2007, 11 November 2007 through 15 November 2007 ; Volume 2 , 2007 , Pages 263-270 ; 0791842967 (ISBN) Jahanyfard, E ; Firoozabadi, B ; Goodarzvand Chegini, A ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2007
    Abstract
    One of the leading causes for death after heart diseases and cancer in all over the world is still stroke. Most strokes happen because an artery carrying blood from the heart to the brain is clogged. Most of the time, as with heart attacks, the problem is atherosclerosis, hardening of the arteries, calcified build up of fatty deposits on the vessel wall. The primary troublemaker is the carotid artery, one on each side of the neck, the main thoroughfare for blood to the brain. In this study, the fluid dynamic simulations were done in the carotid bifurcation artery for studying the formation of atherosclerosis, and shear thinning behavior of blood as well as Newtonian comportment was studied.... 

    Controlled drug delivery using the magnetic nanoparticles in non-Newtonian blood vessels

    , Article Alexandria Engineering Journal ; 2020 Abu Hamdeh, N. H ; Bantan, R. A. R ; Aalizadeh, F ; Alimoradi, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Fouling in blood flow is very common and may decrease the blood flow in human body and lead to critical health issues. Upon injury in a blood vessel, the body's defensive system triggers a process to create a blood clot called “Thrombus”, which prevents bleeding. Blood clots are formed by a combination of blood cells, platelets, and fibrins. In this study, we investigate a controlled drug delivery using the magnetic nanoparticles in blood vessels under the influence of magnetic fields. For this purpose the Maxwell and the Navier-Stokes equations for the system are solved. In contrary to the previous studies it is assumed that the blood is a non-Newtonian fluid. The number of particles has... 

    Controlling differentiation of stem cells for developing personalized organ-on-chip platforms

    , Article Advanced Healthcare Materials ; Volume 7, Issue 2 , 2018 ; 21922640 (ISSN) Geraili, A ; Jafari, P ; Sheikh Hassani, M ; Heidary Araghi, B ; Mohammadi, M. H ; Ghafari, A. M ; Hassanpour Tamrin, S ; Pezeshgi Modarres, H ; Rezaei Kolahchi, A ; Ahadian, S ; Sanati Nezhad, A ; Sharif University of Technology
    Wiley-VCH Verlag  2018
    Abstract
    Organ-on-chip (OOC) platforms have attracted attentions of pharmaceutical companies as powerful tools for screening of existing drugs and development of new drug candidates. OOCs have primarily used human cell lines or primary cells to develop biomimetic tissue models. However, the ability of human stem cells in unlimited self-renewal and differentiation into multiple lineages has made them attractive for OOCs. The microfluidic technology has enabled precise control of stem cell differentiation using soluble factors, biophysical cues, and electromagnetic signals. This study discusses different tissue- and organ-on-chip platforms (i.e., skin, brain, blood–brain barrier, bone marrow, heart,... 

    Early cancer detection in blood vessels using mobile nanosensors

    , Article IEEE Transactions on Nanobioscience ; Volume 18, Issue 2 , 2019 , Pages 103-116 ; 15361241 (ISSN) Mosayebi, R ; Ahmadzadeh, A ; Wicke, W ; Jamali, V ; Schober, R ; Nasiri Kenari, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In this paper, we propose using mobile nanosensors (MNSs) for early stage anomaly detection. For concreteness, we focus on the detection of cancer cells located in a particular region of a blood vessel. These cancer cells produce and emit special molecules, so-called biomarkers, which are symptomatic for the presence of anomaly, into the cardiovascular system. Detection of cancer biomarkers with conventional blood tests is difficult in the early stages of a cancer due to the very low concentration of the biomarkers in the samples taken. However, close to the cancer cells, the concentration of the cancer biomarkers is high. Hence, detection is possible if a sensor with the ability to detect...