Loading...
Search for: boundary-layer-flow
0.008 seconds
Total 42 records

    Optimum Design of Aerodynamic Ducts with Inverse Design

    , M.Sc. Thesis Sharif University of Technology Samadi Vaghefi, Navid (Author) ; Farhanieh, Bijan (Supervisor)
    Abstract
    In optimum design, the goal is to optimize the flow and heat transfer, considering the system limitations. In this research, inverse design is used as a new approach for optimization of aerodynamic ducts and shows that optimization of duct geometry is equivalent to the optimization of the pressure acting on the wall. In order to calculate the optimum pressure distribution, boundary layer equations were solved taking into account the pressure gradient. Moreover, with the help of genetic algorithm a pressure distribution can be obtained that offers the maximum pressure, avoiding fluid separation. It is obvious that this condition is equivalent to maximum pressure recovery in the aerodynamic... 

    Introducing of Arc-Shaped Wall-Jet in Boundary Layer Flow Control Application in Film Cooling-Numerical Simulations

    , M.Sc. Thesis Sharif University of Technology Aftabsavar, Ali (Author) ; Javadi, Khodayar (Supervisor)
    Abstract
    In this research special type of jets those calls Arc-Shape Jets are studied. The meaning of this research is an effort to introduce this types of jets as a new method to film-cooling approach. In the primary section, the fitness of this scheme on a flat plate is studied. After this section, according to the results, this method is implemented on a turbine blade surface. According to the results, this method of film-cooling has suitable effectiveness in lateral direction, this has a reason of radially injection of the coolant jet. The main feature of this concept is operating by mass flow rate of much lower than other schemes. So that in a regular injection of a 45 degrees of actuator arc,... 

    The Investigation of Vortex Generators Effects on the Efficiency of Axial Flow Fans

    , M.Sc. Thesis Sharif University of Technology Shekaridahaj, Morteza (Author) ; Farhanieh, Bijan (Supervisor)
    Abstract
    The ever-increasing need for energy compels researchers to investigate different manners of energy saving. Aَs we know well, one of the effective ways to save energy is to improve the energy consumption of turbomachinery devices such as axial flow fans. Fans are the most applicable of turbomachinery which supply needed airflow, which can be used in ventilation systems, Cooling systems for cars and machines, smoke extraction, and supply required air for firing. Therefore, improving their efficiency can play a significant role in reducing energy consumption and enhancing energy storage. One of the most critical factors in reducing the efficiency of the fans is the stall phenomenon, which can... 

    Simulation of turbulent swirling flow in convergent nozzles

    , Article Scientia Iranica ; Volume 19, Issue 2 , 2012 , Pages 258-265 ; 10263098 (ISSN) Nouri-Borujerdi, A ; Kebriaee, A ; Sharif University of Technology
    Abstract
    This work simulates the turbulent boundary layer of an incompressible viscous swirling flow through a conical chamber. To model the pressure gradient normal to the wall, the radial and tangential velocity components across the boundary layer have been calculated by both the integral and numerical methods. The numerical solution is accomplished by finite difference, based on the finite volume method. The results show that the radial and tangential boundary layer thicknesses depend on the velocity ratios, Reynolds number and nozzle angle. The peak of radial and tangential boundary layer thicknesses are located at zL≈0.2 and zL≈0.8 from the nozzle inlet, respectively. Due to the short length of... 

    Experimental study of the boundary layer over an airfoil in plunging motion

    , Article Acta Mechanica Sinica/Lixue Xuebao ; Volume 28, Issue 2 , 2012 , Pages 372-384 ; 05677718 (ISSN) Rasi Marzabadi, F ; Soltani, M. R ; Sharif University of Technology
    Abstract
    This is an experimental study on the boundary layer over an airfoil under steady and unsteady conditions. It specifically deals with the effect of plunging oscillation on the laminar/turbulent characteristics of the boundary layer. The wind tunnel measurements involved surface-mounted hot-film sensors and boundary-layer rake. The experiments were conducted at Reynolds numbers of 0.42×10 6 to 0.84 × 10 6 and the reduced frequency was varied from 0.01 to 0.11. The results of the quasi-wall-shear stress as well as the boundary layer velocity profiles provided important information about the state of the boundary layer over the suction surface of the airfoil in both static and dynamic cases. For... 

    Investigation of the pressure distribution and transition point over a swept wing

    , Article Scientia Iranica ; Volume 18, Issue 6 , December , 2011 , Pages 1277-1286 ; 10263098 (ISSN) Soltani, M. R ; Ghorbanian, K ; Masdari, M ; Sharif University of Technology
    2011
    Abstract
    A series of wind tunnel tests are performed to examine the flow field over a swept wing under various conditions. The wing has a laminar flow airfoil section, similar to those of the NACA 6-series. Static pressure distributions over the upper surface of the wing, in both chordwise and spanwise directions, are measured at different angles of attack. The data is employed to predict the transition point at each chordwise section. The skewness parameter of the pressure data shows that this factor drops to zero in the transition region. A comparison of the calculated transition point on the wing surface with that obtained from the 2D computational method shows reasonable agreement over a portion... 

    Combined electroosmotically and pressure driven flow of power-law fluids in a slit microchannel

    , Article Journal of Non-Newtonian Fluid Mechanics ; Volume 166, Issue 14-15 , August , 2011 , Pages 792-798 ; 03770257 (ISSN) Babaie, A ; Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    2011
    Abstract
    Electroosmotic flow of power-law fluids in the presence of pressure gradient through a slit is analyzed. After numerically solving the Poisson-Boltzmann equation, the momentum equation with electroosmotic body force is solved through an iterative numerical procedure for both favorable and adverse pressure gradients. The results reveal that, in case of pressure assisted flow, shear-thinning fluids reach higher velocity magnitudes compared with shear-thickening fluids, whereas the opposite is true when an adverse pressure gradient is applied. The Poiseuille number is found to be an increasing function of the dimensionless Debye-Hückel parameter, the wall zeta potential, and the flow behavior... 

    Two-dimensional free convection heat transfer below a horizontal hot isothermal flat strip

    , Article Journal of Heat Transfer ; Volume 137, Issue 5 , May , 2015 ; 00221481 (ISSN) Samie, M ; Nouri Gheimassi, A ; Salari, A ; Behshad Shafii, M ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2015
    Abstract
    Convection heat transfer below a horizontal, hot, and isothermal strip of infinite length and width of 2L embedded in fluids with different Prandtl number (Pr) and Nusselt number (Nu) is analyzed with the aid of integral method. A new concept is utilized to determine the boundary layer thickness at the strip's edge, which is based on matching the flow rate of the boundary layer below the strip at its edge and the flow rate of the plume, which forms after the heated fluid detaches from the strip's edge. In addition to these novelties, a numerical model is developed to verify the analytical framework, and an excellent agreement is observed between the analytical and numerical models  

    On the size-dependent behavior of functionally graded micro-beams

    , Article Materials and Design ; Volume 31, Issue 5 , May , 2010 , Pages 2324-2329 ; 02641275 (ISSN) Asghari, M ; Ahmadian, M. T ; Kahrobaiyan, M. H ; Rahaeifard, M ; Sharif University of Technology
    2010
    Abstract
    In this paper, the size-dependent static and vibration behavior of micro-beams made of functionally graded materials (FGMs) are analytically investigated on the basis of the modified couple stress theory in the elastic range. Functionally graded beams can be considered as inhomogeneous composite structures, with continuously compositional variation from usually a ceramic at the bottom to a metal at the top. The governing equations of motion and boundary conditions are derived on the basis of Hamilton principle. Closed-form solutions for the normalized static deflection and natural frequencies are obtained as a function of the ratio of the beam characteristic size to the internal material... 

    New visions in experimental investigations of a supersonic under-expanded jet into a high subsonic crossflow

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 224, Issue 10 , 2010 , Pages 1069-1080 ; 09544100 (ISSN) Hojaji, M ; Soltani, M. R ; Taeibi Rahni, M ; Sharif University of Technology
    2010
    Abstract
    A series of experiments was performed to investigate the interaction of an under-expanded axisymmetric supersonic jet exhausted from a flat plate with a high subsonic crossflow. The goal was to study the effect of boundary layer thickness (δ) and jet to freestream dynamic pressure ratio (J) on flow field pressure distributions. The resulting measurements upstream of the jet showed that with increasing boundary layer thickness, the magnitude of the pressure coefficient decreases, whereas downstream of the jet, the recovery of the back-pressure moved closer to the nozzle exit. Flow field measurements indicated that with increasing boundary layer thickness, the jet plume dissipation rate... 

    Numerical study on boundary layer control using CH4[sbnd]H2[sbnd]air Micro-reacting jet

    , Article International Journal of Hydrogen Energy ; Volume 41, Issue 47 , 2016 , Pages 22433-22452 ; 03603199 (ISSN) Mardani, A ; Yahyavi Koochaksarai, M ; Javadi, K ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    The focus of present numerical study is on assessment of control of laminar separation bubble phenomenon using Micro-scale combustion actuators in an airfoil with low Reynolds number under surface effect and free flows. In this way, the characteristics of laminar separation bubble such as its formation, geometry, and transition from laminar to turbulent around airfoil SD8020 in attack angles of 5 and 8° are investigated. Following that, the new combustion actuators in Micro-scale, cold, and hot air-jet injection are introduced to control boundary layer flow in terms of eliminating the separation bubble. Some mechanisms are identified for improvement of methane-air premixed flame... 

    Drag reduction by a multi-point optimised hybrid flow control method for two supercritical airfoils

    , Article European Journal of Computational Mechanics ; Volume 25, Issue 5 , 2016 , Pages 359-387 ; 17797179 (ISSN) Nejati, A ; Mazaheri, K ; Sharif University of Technology
    Taylor and Francis Ltd 
    Abstract
    Shock control bump (SCB), suction and blowing are three flow control methods used to control the shock wave/boundary layer interaction to reduce the resulting wave drag in transonic flows. An SCB uses a small local surface deformation to reduce the shock wave strength, while the suction decreases the boundary layer thickness and the blowing delays the flow separation. Here, we will use a multi-point continuous adjoint optimisation scheme to find the optimum design of suction and blowing separately or together, or with the SCB, on two supercritical airfoils, i.e. RAE-5225 and RAE-2822, for a wide range of off-design transonic Mach numbers. The RANS flow equations are solved using the Roe’s... 

    The multi-point optimization of shock control bump with constant-lift constraint enhanced with suction and blowing for a supercritical airfoil

    , Article Flow, Turbulence and Combustion ; Volume 96, Issue 3 , 2016 , Pages 639-666 ; 13866184 (ISSN) Mazaheri, K ; Nejati, A ; Sharif University of Technology
    Abstract
    Both shock control bump (SCB) and suction and blowing are flow control methods used to control the shock wave/boundary layer interaction (SWBLI) in order to reduce the resulting wave drag in transonic flows. A SCB uses a small local surface deformation to reduce the shock-wave strength, while suction decreases the boundary-layer thickness and blowing delays the flow separation. Here a multi-point optimization method under a constant-lift-coefficient constraint is used to find the optimum design of SCB and suction and blowing. These flow control methods are used separately or together on a RAE-2822 supercritical airfoil for a wide range of off-design transonic Mach numbers. The RANS flow... 

    Study of gas flow in micronozzles using an unstructured dsmc method

    , Article Proceedings of the 7th International Conference on Nanochannels, Microchannels, and Minichannels 2009, ICNMM2009, 22 June 2009 through 24 June 2009, Pohang ; Issue PART A , 2009 , Pages 417-424 ; 9780791843499 (ISBN) Roohi, E ; Darbandi, M ; Mirjalili, V ; ASME ; Sharif University of Technology
    Abstract
    The current research uses an unstructured direct simulation Monte Carlo (DSMC) method to numerically investigate supersonic and subsonic flow behavior in micro convergent-divergent nozzle over a wide range of rarefied regimes. The current unstructured DSMC solver has been suitably modified via using uniform distribution of particles, employing proper subcell geometry, and benefiting from an advanced molecular tracking algorithm. Using this solver, we study the effects of back pressure, gas/surface interactions (diffuse/specular reflections), and Knudsen number, on the flow field in micronozzles. We show that high viscous force manifesting in boundary layers prevents supersonic flow formation... 

    Application of the adjoint optimisation of shock control bump for ONERA-M6 wing

    , Article European Journal of Computational Mechanics ; Volume 26, Issue 5-6 , 2017 , Pages 557-583 ; 17797179 (ISSN) Nejati, A ; Mazaheri, K ; Sharif University of Technology
    Abstract
    This article is devoted to the numerical investigation of the shock wave/boundary layer interaction (SWBLI) as the main factor influencing the aerodynamic performance of transonic bumped airfoils and wings. The numerical analysis is conducted for the ONERA-M6 wing through a shock control bump (SCB) shape optimisation process using the adjoint optimisation method. SWBLI is analyzed for both clean and bumped airfoils and wings, and it is shown how the modified wave structure originating from upstream of the SCB reduces the wave drag, by improving the boundary layer velocity profile downstream of the shock wave. The numerical simulation of the turbulent viscous flow and a gradient-based adjoint... 

    Experimental investigation of a supercritical airfoil boundary layer in pitching motion

    , Article Journal of Mechanical Science and Technology ; Volume 31, Issue 1 , 2017 , Pages 189-196 ; 1738494X (ISSN) Masdari, M ; Jahanmiri, M ; Soltani, M. R ; Tabrizian, A ; Gorji, M ; Sharif University of Technology
    Korean Society of Mechanical Engineers  2017
    Abstract
    In this study, the boundary layer velocity profile on the upper surface of a supercritical airfoil in a forced sinusoidal pitching motion was measured and experimentally investigated. Measurements were performed using a boundary layer rake, including total pressure tubes positioned at 25 % of the chord far from the leading edge on the upper surface. For static measurements, the effects of the angle of attack between −3° and 14° and free-stream velocity between 40 m/s and 70 m/s were investigated; for dynamic measurements, the effects of oscillation amplitude variation between ±3° and ±10°, reduced frequency from 0.007 to 0.0313, and mean angle of attack between −3° and 6° were studied during... 

    Experimental investigation of the leading edge vortex formation on unsteady boundary layer

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 232, Issue 18 , 2018 , Pages 3263-3280 ; 09544062 (ISSN) Davari, A. R ; Abdollahi, R ; Azimizadeh, E ; Sharif University of Technology
    Abstract
    Extensive experimental studies have been performed to investigate the unsteady boundary layer behavior over a plunging wind turbine blade section. The studies have been undertaken at various combinations of reduced frequencies, Reynolds numbers, and locations. A boundary layer rake has been carefully manufactured and utilized for velocity measurements inside the unsteady boundary layer. The measurement has been conducted in pre-static stall conditions. The reduced frequency and free stream velocity have varied from 0.005 to 0.1, and 30 to 60 m/s, respectively. To cover all possible scenarios, the streamwise positions of measurements have been chosen to be in favorable (x/c = 0.37), almost... 

    Modeling magneto-mechanical behavior of Fe3O4 nanoparticle/polyamide nanocomposite membrane in an external magnetic field

    , Article Journal of Composite Materials ; Volume 52, Issue 11 , 2018 , Pages 1505-1517 ; 00219983 (ISSN) Tayefeh, A ; Wiesner, M ; Mousavi, A ; Poursalehi, R ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    The magnetic response of a polyamide nanocomposite membrane under applying a magnetic field has been modeled to evaluate elastic deformation order of magnitude. A PA-Fe3O4 nanocomposite membrane is considered to be modeled under influence of volume plane stress caused by a magnetic field. The modeling of the mechanical behavior of Fe3O4-PA nanocomposite membrane suggests that nanoparticle displacements within the nanocomposite, in the order of 200 nm under applying an external magnetic field, are greater than free volumes or porosities of the polyamide membrane. The membrane can be excited to mechanically vibrate by applying an alternating magnetic field lower than 0.1 T. As the results... 

    Quasi-radial wall jets as a new concept in boundary layer flow control

    , Article Journal of Turbulence ; Volume 19, Issue 1 , 2018 , Pages 25-48 ; 14685248 (ISSN) Javadi, K ; Hajipour, M ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    This work aims to introduce a novel concept of wall jets wherein the flow is radially injected into a medium through a sector of a cylinder, called quasi-radial (QR) wall jets. The results revealed that fluid dynamics of the QR wall jet flow differs from that of conventional wall jets. Indeed, lateral and normal propagations of a conventional three-dimensional wall jet are via shear stresses. While, lateral propagation of a QR wall jet is due to mean lateral component of the velocity field. Moreover, discharged Arrays of conventional three-dimensional wall jets in quiescent air lead to formation of a combined wall jet at large distant from the nozzles, while QR wall jet immediately spread in... 

    Turbulent decaying swirling flow in a pipe

    , Article Heat Transfer Research ; Volume 49, Issue 16 , 2018 , Pages 1559-1585 ; 10642285 (ISSN) Aghakashi, V ; Saidi, M. H ; Sharif University of Technology
    Begell House Inc  2018
    Abstract
    In this work, a solution is applied to investigate the heat transfer characteristics in a pipe with turbulent decaying swirling flow by using the boundary layer integral scheme. The governing equation is solved using the forth-order Runge-Kutta scheme resulting in thermal boundary-layer thickness and dimensionless heat transfer coefficient, namely, the Nusselt number. Both forced- and free-vortex profiles are considered for the tangential velocity component. A comparison of the results obtained for the Nusselt number with available experimental data shows that this scheme has good capability in predicting the heat transfer parameters of swirling flow especially in the entrance region of a...