Loading...
Search for: boundary-value-problems
0.012 seconds
Total 72 records

    Elasticity formulation for motion equations of couple stress based micro-rotating disks with varying speeds

    , Article Mechanics Based Design of Structures and Machines ; Volume 49, Issue 1 , 2021 , Pages 1-19 ; 15397734 (ISSN) Bagheri, E ; Asghari, M ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    The elasticity formulation for equations of motion of micro-rotating disks in the presence of angular acceleration as well as the corresponding boundary conditions are developed based on the non-classical continuum theory of couple stress. The system of the boundary value problem is derived on the basis of the variational method. Analytical elasticity solutions to the system of equations are then provided. Based on the elasticity solution, the mechanical responses, including the displacement and stress fields, for varying-speed micro-rotating disks are studied. In a numerical case study, the effect of the couple stresses on the distribution of stress and displacement components are... 

    A general solution procedure for the scaled boundary finite element method via shooting technique

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 384 , 2021 ; 00457825 (ISSN) Daneshyar, A ; Ghaemian, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The scaled boundary finite element method (SBFEM) is known for its inherent ability to simulate unbounded domains and singular fields, and its flexibility in the meshing procedure. Keeping the analytical form of the field variables along one coordinate intact, it transforms the governing partial differential equations of the problem into a system of one-dimensional (initial–)boundary value problems. However, closed-form solution of the said system is not available for most cases (e.g. transient heat transfer, acoustics, ultrasonics, etc.) since the system cannot be diagonalized in general. This paper aims to establish a numerical tool within the context of the shooting technique to evaluate... 

    A model for inhomogeneous large deformation of photo-thermal sensitive hydrogels

    , Article Acta Mechanica ; Volume 232, Issue 8 , 2021 , Pages 2955-2972 ; 00015970 (ISSN) Mazaheri, H ; Namdar, A. H ; Ghasemkhani, A ; Sharif University of Technology
    Springer  2021
    Abstract
    The current study develops a 3D constitutive model for photo-thermal sensitive hydrogels based on free energy decomposition. The hydrogel under study is PNIPAM network with copper chlorophyllin nanoparticle agents attached to the network. The effect of light intensity is considered as a rise in temperature since chlorophyllin nanoparticle agents absorb light irradiation and convert it to heat. Moreover, it is necessary to consider the effect of dissociation of these agents on the hydrogel’s free energy function; therefore, a term is added to the free energy function. After introducing the model, some problems, including the free swelling and uniaxial loading problems, are studied, and the... 

    Effects of couple stresses on the in-plane vibration of micro-rotating disks

    , Article JVC/Journal of Vibration and Control ; Volume 26, Issue 13-14 , 2020 , Pages 1246-1259 Bagheri, E ; Jahangiri, M ; Asghari, M ; Sharif University of Technology
    SAGE Publications Inc  2020
    Abstract
    Micro-rotating disks are extensively used in micro-electromechanical systems such as micro-gyroscopes and micro-rotors. Because of the sensitivity of these elements, enough knowledge about the mechanical behavior of these structures is an essential matter for designers and fabricators. The small-scale effects on the in-plane free vibration of such micro-disks present an important aspect of the mechanical behavior of these elements. The small-scale effects on the in-plane free vibration of these micro-disks are investigated in this study using the modified couple stress theory. By using the Hamilton principle, the partial differential equations governing the coupled radial and tangential... 

    Interaction of a screw dislocation and an embedded nonuniformly coated circular fiber with imperfect interfaces

    , Article International Journal of Solids and Structures ; Volume 182-183 , 2020 , Pages 295-306 Kamali, M. T ; Shodja, H. M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The eccentricity between the circular fiber and its coating as well as the imperfection at the fiber-coating-matrix interfaces associated with certain composites can have a remarkable effect on the movement of a dislocation. For an in-depth understanding of such phenomena, the present work provides an exact analytical solution for the interaction between an eccentrically coated circular inhomogeneity embedded in an infinite elastic medium with imperfect interfaces and a screw dislocation. The dislocation may be located inside one of the regions: the core inhomogeneity, coating, or the matrix. The corresponding boundary value problem is solved by using conformal mapping and complex potential... 

    UWB orthogonal pulse design using Sturm–Liouville boundary value problem

    , Article Signal Processing ; Volume 159 , 2019 , Pages 147-158 ; 01651684 (ISSN) Amini, A ; Mohajerin Esfahani, P ; Ghavami, M ; Marvasti, F ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    The problem of designing UWB pulses which meet specific spectrum requirements is usually treated by filtering common pulses such as Gaussian doublets, modified Hermite polynomials and wavelets. When there is the need to have a number of orthogonal pulses (e.g., in a multiuser scenario), a naive approach is to filter all the members of an orthogonal set, which is likely to destroy their orthogonality property. In this paper, we study the design of a set of pulses that simultaneously satisfy the orthogonality property and spectrum requirements. Our design is based on the eigenfunctions of Sturm–Liouville boundary value problems. Indeed, we introduce Sturm–Liouville differential equations for... 

    Scattering of transverse surface waves by a piezoelectric fiber in a piezoelectric half-space with exponentially varying electromechanical properties

    , Article Zeitschrift fur Angewandte Mathematik und Physik ; Volume 70, Issue 2 , 2019 ; 00442275 (ISSN) Ghafarollahi, A ; Shodja, H. M ; Sharif University of Technology
    Birkhauser Verlag AG  2019
    Abstract
    In the present work, an analytical solution is presented for the scattering of transverse surface waves by a homogeneous piezoelectric fiber contained in a functionally graded piezoelectric half-space with exponential variation. The boundary value problem of interest is solved by constructing an appropriate set of multipole functions which satisfy: (a) the electromechanical field equations in the half-space, (b) the boundary conditions along its free surface, and (c) the far-filed radiation conditions. It is shown that the simple poles of these functions are related to the roots of the pertinent dispersion relation. For the case of electrically short condition along the free surface of the... 

    Elasticity formulation for motion equations of couple stress based micro-rotating disks with varying speeds

    , Article Mechanics Based Design of Structures and Machines ; 2019 ; 15397734 (ISSN) Bagheri, E ; Asghari, M ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    The elasticity formulation for equations of motion of micro-rotating disks in the presence of angular acceleration as well as the corresponding boundary conditions are developed based on the non-classical continuum theory of couple stress. The system of the boundary value problem is derived on the basis of the variational method. Analytical elasticity solutions to the system of equations are then provided. Based on the elasticity solution, the mechanical responses, including the displacement and stress fields, for varying-speed micro-rotating disks are studied. In a numerical case study, the effect of the couple stresses on the distribution of stress and displacement components are... 

    Elasticity formulation for motion equations of couple stress based micro-rotating disks with varying speeds

    , Article Mechanics Based Design of Structures and Machines ; 2019 ; 15397734 (ISSN) Bagheri, E ; Asghari, M ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    The elasticity formulation for equations of motion of micro-rotating disks in the presence of angular acceleration as well as the corresponding boundary conditions are developed based on the non-classical continuum theory of couple stress. The system of the boundary value problem is derived on the basis of the variational method. Analytical elasticity solutions to the system of equations are then provided. Based on the elasticity solution, the mechanical responses, including the displacement and stress fields, for varying-speed micro-rotating disks are studied. In a numerical case study, the effect of the couple stresses on the distribution of stress and displacement components are... 

    Scattering of SH-waves by an elliptic cavity/crack beneath the interface between functionally graded and homogeneous half-spaces via multipole expansion method

    , Article Journal of Sound and Vibration ; Volume 435 , 2018 , Pages 372-389 ; 0022460X (ISSN) Ghafarollahi, A ; Shodja, H. M ; Sharif University of Technology
    Academic Press  2018
    Abstract
    In this study, based on multipole expansion method an analytical treatment is presented for the anti-plane scattering of SH-waves by an arbitrarily oriented elliptic cavity/crack which is embedded near the interface between exponentially graded and homogeneous half-spaces. The cavity is embedded within the inhomogeneous half-space. The boundary value problem of interest is solved by constructing an appropriate set of multipole functions which satisfy (i) the governing equation in each half-space, (ii) the continuity conditions across the interface between the two half-spaces, and (iii) the far-field radiation and regularity conditions. The analytical expressions for the scattered... 

    Fully coupled hydromechanical multiscale model with microdynamic effects

    , Article International Journal for Numerical Methods in Engineering ; Volume 115, Issue 3 , 2018 , Pages 293-327 ; 00295981 (ISSN) Khoei, A. R ; Hajiabadi, M. R ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    In this paper, a multiscale finite element framework is developed based on the first-order homogenization method for fully coupled saturated porous media using an extension of the Hill-Mandel theory in the presence of microdynamic effects. The multiscale method is employed for the consolidation problem of a 2-dimensional saturated soil medium generated from the periodic arrangement of circular particles embedded in a square matrix, which is compared with the direct numerical simulation method. The effects of various issues, including the boundary conditions, size effects, particle arrangements, and the integral domain constraints for the microscale boundary value problem, are numerically... 

    Scattering of SH-waves by a nano-fiber beneath the interface of two bonded half-spaces within surface/interface elasticity via multipole expansion

    , Article International Journal of Solids and Structures ; Volume 130-131 , 2018 , Pages 258-279 ; 00207683 (ISSN) Ghafarollahi, A ; Shodja, H. M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The present work aims to study the anti-plane scattering of SH-waves by an elastic micro-/nano-fiber which is embedded near the interface between exponentially graded and homogeneous half-spaces incorporating interface effects. The fiber is perfectly bonded to the inhomogeneous medium. It is well-known that traditional elasticity theory is incapable of accounting accurately for the nanoscopic-interfaces and, likewise, inappropriate for the prediction of the behavior of nano-sized structures where the surface-to-volume ratio is remarkably large. In the present study, the interface effects are incorporated using the well-known (Gurtin and Murdoch, 1975) surface elasticity theory which permits... 

    Coupling behavior of the pH/temperature sensitive hydrogels for the inhomogeneous and homogeneous swelling

    , Article Smart Materials and Structures ; Volume 25, Issue 8 , 2016 ; 09641726 (ISSN) Mazaheri, H ; Baghani, M ; Naghdabadi, R ; Sohrabpour, S ; Sharif University of Technology
    Institute of Physics Publishing  2016
    Abstract
    In this work, a model is developed to continuously predict homogeneous and inhomogeneous swelling behavior of pH/temperature sensitive PNIPAM hydrogels. Employing the model, homogeneous swelling of the pH/temperature sensitive hydrogel is investigated for free and biaxial constrained swelling cases. Comparing the model results with the experimental data available in the literature, the validity of the model is confirmed. The model is then employed to investigate inhomogeneous swelling of a spherical shell on a hard core both analytically and numerically for pH or temperature variations. In this regard, numerical tools are developed via preparing a user defined subroutine in ABAQUS software.... 

    Flutter of wings involving a locally distributed flexible control surface

    , Article Journal of Sound and Vibration ; Volume 357 , November , 2015 , Pages 377-408 ; 0022460X (ISSN) Mozaffari Jovin, S ; Firouz Abadi, R. D ; Roshanian, J ; Sharif University of Technology
    Academic Press  2015
    Abstract
    This paper undertakes to facilitate appraisal of aeroelastic interaction of a locally distributed, flap-type control surface with aircraft wings operating in a subsonic potential flow field. The extended Hamilton's principle serves as a framework to ascertain the Euler-Lagrange equations for coupled bending-torsional-flap vibration. An analytical solution to this boundary-value problem is then accomplished by assumed modes and the extended Galerkin's method. The developed aeroelastic model considers both the inherent flexibility of the control surface displaced on the wing and the inertial coupling between these two flexible bodies. The structural deformations also obey the Euler-Bernoulli... 

    Dynamic response of a non-uniform Timoshenko beam, subjected to moving mass

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 229, Issue 14 , October , 2015 , Pages 2499-2513 ; 09544062 (ISSN) Roshandel, D ; Mofid, M ; Ghannadiasl, A ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    In this article, the dynamic response of a non-uniform Timoshenko beam acted upon by a moving mass is extensively investigated. To this end, the eigenfunction expansion method is adapted to the problem, employing the natural mode shapes of a uniform Timoshenko beam. Moreover, the orthonormal polynomial series expansion method is successfully applied to the coupled set of governing differential equations pertaining to the dynamic behavior of non-uniform Timoshenko beam actuated by a moving mass. Some numerical examples are solved in which the excellent agreement of the two presented methods is illustrated  

    Modal analysis of the dynamic response of Timoshenko beam under moving mass

    , Article Scientia Iranica ; Volume 22, Issue 2 , 2015 , Pages 331-344 ; 10263098 (ISSN) Roshandel, D ; Mofid, M ; Ghannadiasl, A ; Sharif University of Technology
    Sharif University of Technology  2015
    Abstract
    In this study, the dynamic response of a Timoshenko beam under moving mass is investigated. To this end, vectorial form orthogonality property of the Timoshenko beam free vibration modes is applied to the EEM (Eigenfunction Expansion Method). The implication of the vectorial form series and an appropriate inner product of mode shapes in combination are focused for a beam with arbitrary boundary conditions. Consequently, significant simplifications and efficacy in the utilization of the EEM in eliminating the spatial domain is achieved. In order to comprise validation, the present study is compared with the DET (Discrete Element Technique) and the RKPM (Reproducing Kernel Particle Method)  

    A new orthonormal polynomial series expansion method in vibration analysis of thin beams with non-uniform thickness

    , Article Applied Mathematical Modelling ; Volume 37, Issue 18-19 , 2013 , Pages 8543-8556 ; 0307904X (ISSN) Ebrahimzadeh Hassanabadi, M ; Nikkhoo, A ; Vaseghi Amiri, J ; Mehri, B ; Sharif University of Technology
    2013
    Abstract
    In this article, OPSEM (Orthonormal Polynomial Series Expansion Method) is developed as a new computational approach for the evaluation of thin beams of variable thickness transverse vibration. Capability of the OPSEM in assessing the free vibration frequencies and mode shapes of an Euler-Bernoulli beam with varying thickness is discussed. Multispan continuous beams with various classical boundary conditions are included. Contribution of BOPs (Basic Orthonormal Polynomials) in capturing the beam vibrations is also illustrated in numerical examples to give a quantitative measure of convergence rate. Furthermore, OPSEM is adopted for the forced vibration of a thin beam caused by a moving mass.... 

    Numerical modeling of pulse tube refrigerator and sensitivity analysis of simulation

    , Article HVAC and R Research ; Volume 19, Issue 3 , 2013 , Pages 242-256 ; 10789669 (ISSN) Jahanbakhshi, R ; Saidi, M. H ; Ghahremani, A. R ; Sharif University of Technology
    2013
    Abstract
    In this article a double-inlet pulse-tube refrigerator (DIPTR) is modeled using the nodal analysis technique. The main complexity of the problem is oscillatory and unsteady characteristics of the flow. Solving the flow field in the regenerator section of the system as a porous medium with nonlocal thermal equilibrium is challenging. Governing equations are developed applying mass, energy, and momentum equations to different finite volumes in each component of DIPTR. A numerical code (SharifPTR), with graphical user interface, has been developed to investigate the influence of geometrical and working parameters on performance. The governing equations are a system of boundary value problems.... 

    FE analysis of RC structures using DSC model with yield surfaces for tension and compression

    , Article Computers and Concrete ; Volume 11, Issue 2 , 2013 , Pages 123-148 ; 15988198 (ISSN) Akhaveissy, A. H ; Desai, C. S ; Mostofinejad, D ; Vafai, A ; Sharif University of Technology
    2013
    Abstract
    The nonlinear finite element method with eight noded isoparametric quadrilateral element for concrete and two noded element for reinforcement is used for the prediction of the behavior of reinforcement concrete structures. The disturbed state concept (DSC) including the hierarchical single surface (HISS) plasticity model with associated flow rule with modifications is used to characterize the constitutive behavior of concrete both in compression and in tension which is named DSC/HISS-CT. The HISS model is applied to shows the plastic behavior of concrete, and DSC for microcracking, fracture and softening simulations of concrete. It should be noted that the DSC expresses the behavior of a... 

    An existence-uniqueness theorem for a class of boundary value problems

    , Article Fixed Point Theory ; Volume 13, Issue 2 , 2012 , Pages 589-592 ; 15835022 (ISSN) Mokhtarzadeh, M. R ; Pournaki, M. R ; Razani, A ; Sharif University of Technology
    2012
    Abstract
    In this paper the solutions of a two-endpoint boundary value problem is studied and under suitable assumptions the existence and uniqueness of a solution is proved. As a consequence, a condition to guarantee the existence of at least one periodic solution for a class of Liénard equations is presented