Loading...
Search for: brownian-movement
0.005 seconds
Total 30 records

    Margination and adhesion of micro- and nanoparticles in the coronary circulation: A step towards optimised drug carrier design

    , Article Biomechanics and Modeling in Mechanobiology ; Volume 17, Issue 1 , 2018 , Pages 205-221 ; 16177959 (ISSN) Forouzandehmehr, M ; Shamloo, A ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Obstruction of left anterior descending artery (LAD) due to the thrombosis or atherosclerotic plaques is the leading cause of death worldwide. Targeted delivery of drugs through micro- and nanoparticles is a very promising approach for developing new strategies in clot-busting or treating restenosis. In this work, we modelled the blood flow characteristics in a patient-specific reconstructed LAD artery by the fluid–solid interaction method and based on physiological boundary conditions. Next, we provided a Lagrangian description of micro- and nanoparticles dynamics in the blood flow considering their Brownian motion and the particle–particle interactions. Our results state that the number of... 

    Complex self-propelled rings: A minimal model for cell motility

    , Article Soft Matter ; Volume 13, Issue 35 , 2017 , Pages 5865-5876 ; 1744683X (ISSN) Abaurrea Velasco, C ; Dehghani Ghahnaviyeh, S ; Nejat Pishkenari, H ; Auth, T ; Gompper, G ; Sharif University of Technology
    Royal Society of Chemistry  2017
    Abstract
    Collective behavior of active matter is observed for self-propelled particles, such as vibrated disks and active Brownian particles, as well as for cytoskeletal filaments in motile cells. Here, a system of quasi two-dimensional penetrable self-propelled rods inside rigid rings is used to construct a complex self-propelled particle. The rods interact sterically with each other and with a stationary or mobile ring via a separation-shifted Lennard-Jones potential. They either have a sliding attachment to the inside of the ring at one of their ends, or can move freely within the ring confinement. We study the inner structure and dynamics of the mobile self-propelled rings. We find that these... 

    Comprehensive reactive receiver modeling for diffusive molecular communication systems: reversible binding, molecule degradation, and finite number of receptors

    , Article IEEE Transactions on Nanobioscience ; Volume PP, Issue 99 , 2016 ; 15361241 (ISSN) Ahmadzadeh, A ; Arjmandi, H ; Burkovski, A ; Schober, R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    This paper studies the problem of receiver modeling in molecular communication systems. We consider the diffusive molecular communication channel between a transmitter nanomachine and a receiver nano-machine in a fluid environment. The information molecules released by the transmitter nano-machine into the environment can degrade in the channel via a first-order degradation reaction and those that reach the receiver nanomachine can participate in a reversible bimolecular reaction with receiver receptor proteins. Thereby, we distinguish between two scenarios. In the first scenario, we assume that the entire surface of the receiver is covered by receptor molecules. We derive a closed-form... 

    Natural convection of Al2O3-water nanofluid in an inclined enclosure with the effects of slip velocity mechanisms: Brownian motion and thermophoresis phenomenon

    , Article International Journal of Thermal Sciences ; Volume 105 , 2016 , Pages 137-158 ; 12900729 (ISSN) Esfandiary, M ; Mehmandoust, B ; Karimipour, A ; Pakravan, H. A ; Sharif University of Technology
    Elsevier Masson SAS 
    Abstract
    Effects of inclination angle on natural convective heat transfer and fluid flow in an enclosure filled with Al2O3-water nanofluid are studied numerically. The left and right walls of enclosure are kept in hot and cold constant temperature while the other two walls are assumed to be adiabatic. Considering Brownian motion and thermophoresis effect (two important slip velocity mechanisms) the two-phase mixture model has been employed to investigate the flow and thermal behaviors of the nanofluid. The study was performed for various inclination angles of enclosure ranging from γ = 0° to γ = 60°, volume fraction from 0% to 3%, and Rayleigh numbers varying from 105 to 107. The governing equations... 

    Heat transfer and pressure drop characteristics of nanofluid in unsteady squeezing flow between rotating porous disks considering the effects of thermophoresis and Brownian motion

    , Article Advanced Powder Technology ; Volume 27, Issue 2 , Volume 27, Issue 2 , 2016 , Pages 564-574 ; 09218831 (ISSN) Saidi, M. H ; Tamim, H ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    In this study, the unsteady three dimensional nanofluid flow, heat and mass transfer in a rotating system in the presence of an externally applied uniform vertical magnetic field is investigated. This study has different applications in rotating magneto-hydrodynamic (MHD) energy generators for new space systems and also thermal conversion mechanisms for nuclear propulsion space vehicles. The important effects of Brownian motion and thermophoresis have been included in the model of nanofluid. The governing equations are non-dimensionalized using geometrical and physical flow field-dependent parameters. The velocity profiles in radial, tangential and axial directions, pressure gradient,... 

    Gas absorption enhancement in hollow fiber membrane contactors using nanofluids: Modeling and simulation

    , Article Chemical Engineering and Processing: Process Intensification ; Volume 119 , 2017 , Pages 7-15 ; 02552701 (ISSN) Darabi, M ; Rahimi, M ; Molaei Dehkordi, A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    In this article, a comprehensive 2D mathematical model has been developed to simulate process intensification of carbon dioxide absorption in the presence of nanoparticles in hollow fiber membrane contactors (HFMCs). The influences of nanoparticle were taken into account considering Brownian motion and Grazing effect as dominant phenomena of mass-transfer enhancement in nanofluids. The obtained simulation results were validated against experimental data reported in the literature and excellent agreement was obtained. It was found that by adding 0.05 wt % silica nanoparticles, the absorption rate could be enhanced by 16%, while the corresponding value is 32% for CNT nanoparticles. High... 

    Nanoparticles migration due to thermophoresis and Brownian motion and its impact on Ag-MgO/water hybrid nanofluid natural convection

    , Article Powder Technology ; Volume 375 , 20 September , 2020 , Pages 493-503 Goudarzi, S ; Shekaramiz, M ; Omidvar, A ; Golab, E ; Karimipour, A ; Karimipour, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    The present study aims to investigate the impact of nanoparticle migration due to Brownian motion and thermophoresis on Ag-MgO/Water hybrid nanofluid natural convection. An enclosure with sinusoidal wavy walls is considered for this investigation; right and cold walls of this enclosure are in constant temperature while the upper and bottom walls are insulated. This simulation follows Buongiorno's mathematical model; Brownian and thermophoresis diffusion of Ag occurs in MgO-Water nanofluid while the diffusion of MgO happens in Ag-water nanofluid. The result indicates that Nu number increments up to 11% by increasing thermophoresis diffusion for both nanoparticles. Also, increasing Brownian... 

    Effects of Brownian motions and thermophoresis diffusions on the hematocrit and LDL concentration/diameter of pulsatile non-Newtonian blood in abdominal aortic aneurysm

    , Article Journal of Non-Newtonian Fluid Mechanics ; Volume 294 , 2021 ; 03770257 (ISSN) Abbasi, M ; Esfahani, A. N ; Golab, E ; Golestanian, O ; Ashouri, N ; Sajadi, S. M ; Ghaemi, F ; Baleanu, D ; Karimipour, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    LDL concentration is believed to be responsible for plaque formation that leads to atherosclerotic cardiovascular disease. We conducted this study to investigate the effects of hematocrits and LDL diameters on LDL concentration on the wall of an abdominal aortic aneurysm (AAA). The blood flow was considered to be a pulsatile and non-Newtonian flow whose viscosity was a function of hematocrits and strain rate. Lumen, Brownian, and thermophoresis diffusions were analyzed in LDL concentration. The results demonstrated that adding thermophoresis diffusion increases LDL concentration. Moreover, among three types of LDLs, including small LDLs, intermediate LDLs, and large LDLs, small LDLs were the... 

    A Petrov-Galerkin finite element method using polyfractonomials to solve stochastic fractional differential equations

    , Article Applied Numerical Mathematics ; Volume 169 , 2021 , Pages 64-86 ; 01689274 (ISSN) Abedini, N ; Foroush Bastani, A ; Zohouri Zangeneh, B ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this paper, we are concerned with existence, uniqueness and numerical approximation of the solution process to an initial value problem for stochastic fractional differential equation of Riemann-Liouville type. We propose and analyze a Petrov-Galerkin finite element method based on fractional (non-polynomial) Jacobi polyfractonomials as basis and test functions. Error estimates in L2 norm are derived and numerical experiments are provided to validate the theoretical results. As an illustrative application, we generate sample paths of the Riemann-Liouville fractional Brownian motion which is of importance in many applications ranging from geophysics to traffic flow in telecommunication... 

    Effect of non-Newtonian flow due to thermally-dependent properties over an inclined surface in the presence of chemical reaction, Brownian motion and thermophoresis

    , Article Alexandria Engineering Journal ; Volume 60, Issue 5 , 2021 , Pages 4931-4945 ; 11100168 (ISSN) Ahmad, S ; Ahmad, A ; Ali, K ; Bashir, H ; Iqbal, M. F ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The aim of present study is to investigate the convective heat and mass transfer in steady MHD boundary layer flow of an electrically conducting micropolar fluid over an inclined surface. Partial differential equations resulting from the mathematical modeling of the phenomenon are reduce to nonlinear ODEs, and a finite difference based scheme has been adopted to iteratively find the numerical solution by employing the successive over-relaxation (SOR) method. A self-developed computer code has been used in the MATLAB environment. Influence of chemical reaction, Brownian motion, thermophoresis, and viscous dissipation on the relevant features of the flow are discussed and analyzed through... 

    Effects of Brownian motions and thermophoresis diffusions on the hematocrit and LDL concentration/diameter of pulsatile non-Newtonian blood in abdominal aortic aneurysm

    , Article Journal of Non-Newtonian Fluid Mechanics ; Volume 294 , 2021 ; 03770257 (ISSN) Abbasi, M ; Esfahani, A. N ; Golab, E ; Golestanian, O ; Ashouri, N ; Sajadi, S. M ; Ghaemi, F ; Baleanu, D ; Karimipour, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    LDL concentration is believed to be responsible for plaque formation that leads to atherosclerotic cardiovascular disease. We conducted this study to investigate the effects of hematocrits and LDL diameters on LDL concentration on the wall of an abdominal aortic aneurysm (AAA). The blood flow was considered to be a pulsatile and non-Newtonian flow whose viscosity was a function of hematocrits and strain rate. Lumen, Brownian, and thermophoresis diffusions were analyzed in LDL concentration. The results demonstrated that adding thermophoresis diffusion increases LDL concentration. Moreover, among three types of LDLs, including small LDLs, intermediate LDLs, and large LDLs, small LDLs were the... 

    A Petrov-Galerkin finite element method using polyfractonomials to solve stochastic fractional differential equations

    , Article Applied Numerical Mathematics ; Volume 169 , 2021 , Pages 64-86 ; 01689274 (ISSN) Abedini, N ; Foroush Bastani, A ; Zohouri Zangeneh, B ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this paper, we are concerned with existence, uniqueness and numerical approximation of the solution process to an initial value problem for stochastic fractional differential equation of Riemann-Liouville type. We propose and analyze a Petrov-Galerkin finite element method based on fractional (non-polynomial) Jacobi polyfractonomials as basis and test functions. Error estimates in L2 norm are derived and numerical experiments are provided to validate the theoretical results. As an illustrative application, we generate sample paths of the Riemann-Liouville fractional Brownian motion which is of importance in many applications ranging from geophysics to traffic flow in telecommunication... 

    Effect of non-Newtonian flow due to thermally-dependent properties over an inclined surface in the presence of chemical reaction, Brownian motion and thermophoresis

    , Article Alexandria Engineering Journal ; Volume 60, Issue 5 , 2021 , Pages 4931-4945 ; 11100168 (ISSN) Ahmad, S ; Ahmad, A ; Ali, K ; Bashir, H ; Iqbal, M. F ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The aim of present study is to investigate the convective heat and mass transfer in steady MHD boundary layer flow of an electrically conducting micropolar fluid over an inclined surface. Partial differential equations resulting from the mathematical modeling of the phenomenon are reduce to nonlinear ODEs, and a finite difference based scheme has been adopted to iteratively find the numerical solution by employing the successive over-relaxation (SOR) method. A self-developed computer code has been used in the MATLAB environment. Influence of chemical reaction, Brownian motion, thermophoresis, and viscous dissipation on the relevant features of the flow are discussed and analyzed through... 

    Computational analysis of nanofluid effects on convective heat transfer enhancement of micro-pin-fin heat sinks

    , Article International Journal of Thermal Sciences ; Volume 58 , 2012 , Pages 168-179 ; 12900729 (ISSN) Seyf, H. R ; Feizbakhshi, M ; Sharif University of Technology
    Elsevier  2012
    Abstract
    Numerical investigation on the application of nanofluids in Micro-Pin-Fin Heat Sinks (MPFHSs) has been presented in this paper. To investigate flow and heat transfer behavior in MPFHS the three-dimensional steady Navier-Stokes and energy equations were discretized using a finite volume approach and have been solved iteratively, using the SIMPLE algorithm. DI-water is used as a base coolant fluid while the nanoparticles used in the present study are CuO nanoparticles with mean diameters of 28.6 and 29 nm and Al 2O 3 nanoparticles with mean diameters of 38.4 and 47 nm. The results show that (i) a significant enhancement of heat transfer in the MPFHS due to suspension of CuO orAl 2O 3... 

    Study of heterogeneity loss in upscaling of geological maps by introducing a cluster-based heterogeneity number

    , Article Physica A: Statistical Mechanics and its Applications ; Volume 436 , October , 2015 , Pages 1-13 ; 03784371 (ISSN) Ganjeh Ghazvini, M ; Masihi, M ; Baghalha, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    The prediction of flow behavior in porous media can provide useful insights into the mechanisms involved in CO2 sequestration, petroleum engineering and hydrology. The multi-phase flow is usually simulated by solving the governing equations over an efficient model. The geostatistical (or fine grid) models are rarely used for simulation purposes because they have too many cells. A common approach is to coarsen a fine gird realization by an upscaling method. Although upscaling can speed up the flow simulation, it neglects the fine scale heterogeneity. The heterogeneity loss reduces the accuracy of simulation results. In this paper, the relation between heterogeneity loss during upscaling and... 

    Heat transfer and pressure drop characteristics of nanofluid in unsteady squeezing flow between rotating porous disks considering the effects of thermophoresis and Brownian motion

    , Article Advanced Powder Technology ; Volume 27, Issue 2 , March , 2016 , Pages 564–574 ; 09218831 (ISSN) Saidi, M. H ; Tamim, H ; Sharif University of Technology
    Elsevier  2016
    Abstract
    In this study, the unsteady three dimensional nanofluid flow, heat and mass transfer in a rotating system in the presence of an externally applied uniform vertical magnetic field is investigated. This study has different applications in rotating magneto-hydrodynamic (MHD) energy generators for new space systems and also thermal conversion mechanisms for nuclear propulsion space vehicles. The important effects of Brownian motion and thermophoresis have been included in the model of nanofluid. The governing equations are non-dimensionalized using geometrical and physical flow field-dependent parameters. The velocity profiles in radial, tangential and axial directions, pressure gradient,... 

    Dynamics of magnetic nano-flake vortices in Newtonian fluids

    , Article Journal of Magnetism and Magnetic Materials ; Volume 419 , 2016 , Pages 547-552 ; 03048853 (ISSN) Bazazzadeh, N ; Mohseni, S. M ; Khavasi, A ; Zibaii, M. I ; Movahed, S. M. S ; Jafari, G. R ; Sharif University of Technology
    Elsevier 
    Abstract
    We study the rotational motion of nano-flake ferromagnetic disks suspended in a Newtonian fluid, as a potential material owing the vortex-like magnetic configuration. Using analytical expressions for hydrodynamic, magnetic and Brownian torques, the stochastic angular momentum equation is determined in the dilute limit conditions under applied magnetic field. Results are compared against experimental ones and excellent agreement is observed. We also estimate the uncertainty in the orientation of the disks due to the Brownian torque when an external magnetic field aligns them. Interestingly, this uncertainty is roughly proportional to the ratio of thermal energy of fluid to the magnetic energy... 

    Molecular dynamics simulations of orai reveal how the third transmembrane segment contributes to hydration and ca2+ selectivity in calcium release-activated calcium channels

    , Article Journal of Physical Chemistry B ; Volume 122, Issue 16 , 2018 , Pages 4407-4417 ; 15206106 (ISSN) Alavizargar, A ; Berti, C ; Ejtehadi, M. R ; Furini, S ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    Calcium release-activated calcium (CRAC) channels open upon depletion of Ca2+ from the endoplasmic reticulum, and when open, they are permeable to a selective flux of calcium ions. The atomic structure of Orai, the pore domain of CRAC channels, from Drosophila melanogaster has revealed many details about conduction and selectivity in this family of ion channels. However, it is still unclear how residues on the third transmembrane helix can affect the conduction properties of the channel. Here, molecular dynamics and Brownian dynamics simulations were employed to analyze how a conserved glutamate residue on the third transmembrane helix (E262) contributes to selectivity. The comparison... 

    Modified Buongiorno's model for fully developed mixed convection flow of nanofluids in a vertical annular pipe

    , Article Computers and Fluids ; Vol. 89 , 2014 , pp. 124-132 ; ISSN: 00457930 Malvandi, A ; Moshizi, S. A ; Soltani, E. G ; Ganji, D. D ; Sharif University of Technology
    Abstract
    This paper deals with the mixed convective heat transfer of nanofluids through a concentric vertical annulus. Because of the non-adherence of the fluid-solid interface in the presence of nanoparticle migrations, known as slip condition, the Navier's slip boundary condition was considered at the pipe walls. The employed model for nanofluid includes the modified two-component four-equation non-homogeneous equilibrium model that fully accounts for the effects of nanoparticles volume fraction distribution. Assuming the fully developed flow and heat transfer, the basic partial differential equations including continuity, momentum, and energy equations have been reduced to two-point ordinary... 

    Thermal conductivity of mixed nanofluids under controlled pH conditions

    , Article International Journal of Thermal Sciences ; Volume 74 , 2013 , Pages 63-71 ; 12900729 (ISSN) Iranidokht, V ; Hamian, S ; Mohammadi, N ; Shafii, M. B ; Sharif University of Technology
    2013
    Abstract
    Just a few investigations have been conducted to study the mixed nanofluids(MNs), which contain more than one type of nanoparticles, despite considerable advances in the field of nanofluids thermal conductivity. In present research, by combining different volume fractions of various nanoparticles, the variation of mixed nanofluids thermal conductivity was considered. The mentioned nanofluids have different fabrication cost. First, the effect of each specific nanoparticle presence in the base fluid on the thermal conductivity of nanofluid was surveyed both experimentally and theoretically. Then, the thermal conductivities of two MNs, one consisted of a metallic nanoparticle (high thermal...