Loading...
Search for: buckling-behaviors
0.011 seconds

    Seismic Behavior of Concentric Steel Braced Frames In Near Fault Ground Motion

    , M.Sc. Thesis Sharif University of Technology Mahdizadeh Sari, Alireza (Author) ; Golafshani, Ali Akbar (Supervisor)
    Abstract
    The use of braced frames has become more popular in seismic design of buildings because of the simplicity in design and construction. The first event that occurs in the earthquake for a concentrically brace frame (CBF), is the buckling of the strut. The inelastic behavior of CBF systems is dominated by brace buckling, yielding and the post buckling behavior. The Inelastic performance of the brace is nonsymmetrical, because of the difference in the tensile and compressive strength of the brace and the deterioration in the resistance after buckling. so we have too complexity in modeling the inelastic performance of brace members. Also the subject of the near fault ground motion and design of... 

    Development of a Three Layer Model for Simulating Transient Behavior Cutting Transport in Extended-reach Well

    , Ph.D. Dissertation Sharif University of Technology Akhshik, Siamak (Author) ; Behzad, Mehdi (Supervisor)
    Abstract
    A major concern in directional well drilling is the transport mechanism of cuttings by drilling fluid. This thesis describes the effect of angular velocity and postbuckled vibrations of drillstring on cuttings transport in a directional well drilling. The analysis proceeds in two stages. First, a finite element model is used to predict the dynamic behavior of postbuckled drillstring inside a directional well. Second, a coupled Computational Fluid Dynamics and Discrete Element Method (CFD-DEM) approach to simulate the cuttings transport considering the dynamic collision process. In the combined computational fluid dynamics and discrete element method (CFD-DEM), the fluid phase is treated... 

    A modified molecular structural mechanics model for the buckling analysis of single layer graphene sheet

    , Article Solid State Communications ; Volume 225 , 2016 , Pages 12-16 ; 00381098 (ISSN) Firouz Abadi, R. D ; Moshrefzadeh Sany, H ; Mohammadkhani, H ; Sarmadi, M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    In this paper the classical molecular structural mechanics model of graphene is modified to improve its accuracy for the analysis of transverse deformations. To this aim, a sample graphene sheet under a uniform pressure is modeled by both molecular dynamics and molecular structural mechanics methods. The sectional properties of the beam element, by which the covalent bonds are modeled, are modified such that the difference between the results of the molecular mechanics model and molecular dynamics simulation is minimized. Using this modified model, the buckling behavior of graphene under a uniform edge pressure is investigated subjected to different boundary conditions for both zigzag and... 

    Effect of defects on the local shell buckling and post-buckling behavior of single and multi-walled carbon nanotubes

    , Article Computational Materials Science ; Volume 79 , November , 2013 , Pages 736-744 ; 09270256 (ISSN) Eftekhari, M ; Mohammadi, S ; Khoei, A. R ; Sharif University of Technology
    Abstract
    The local buckling behavior of perfect/defective and single/multi-walled carbon nanotubes (CNTs) under axial compressive forces has been investigated by the molecular dynamics approach. Effects of different types of defects including vacancy and Stone-Wales (SW) defects and their configurations on CNTs with different chiralities at room temperature are studied. Results show that defects largely reduce the buckling stress and the ratio of immediate reduction in buckling compressive stress of the defective CNT to the perfect one, but have little influence on their compressive elastic modulus. SW defects usually reduce the mechanical properties more than vacancy defects, and zigzag CNTs are... 

    Buckling and Post-Buckling Analysis of Conical Shells under Non-uniform Axial Loading

    , M.Sc. Thesis Sharif University of Technology Rafiee, Mostafa (Author) ; Kouchakzadeh, Mohammad Ali (Supervisor)
    Abstract
    The thesis addresses the buckling and post-buckling analysis of an elastic conical shell under non-uniform axial loading using finite element method. Non-uniform axial load is applied to one end of the truncated cone in the form of two equal-length loaded zones, diametrically opposite to each other. Material used in this thesis is isotropic with linear elasticity. The results are presented for different boundary condition. The results show that the buckling strength obtained by nonlinear analysis may be upto 40% less than the buckling strength obtained by linear analysis. The effects of boundary conditions and geometry on the results has been investigated  

    Post-Buckling Analysis of Microplates based on the Strain Gradient Elasticity Theory

    , M.Sc. Thesis Sharif University of Technology Maboudi, Ghazale (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    In recent years, the world has seen a great progress in micro electro-mechanical systems (MEMS). Small size, low weight, high accuracy and low energy consumption have made these devices applicable in a variety of usages. In MEMS devices, mechanical components are used for specific purposes among which one of the most widely used are micro plates. Microplates are used in the structure of many devices such as microswitchs and atomic force microscopes. Therefore, studying of static and dynamic behavior of microplates is important. As the object gets smaller (to the scale of micro and nano meters), the classic theory of mechanics of continuous media cannot predict the behavior due to its... 

    Parametric study and design approach of off-center bracing systems

    , Article Structural Design of Tall and Special Buildings ; Volume 26, Issue 3 , 2017 ; 15417794 (ISSN) Sedaghati, P ; Lotfollahi, M ; Mofid, M ; Sharif University of Technology
    Abstract
    This paper presents an effective approach for the seismic design of off-center bracing systems (OBSs). The nonlinear behavior of an OBS can be specified by evaluation of two yielding stages representing tensile yielding of different bracings. This can be achieved when stiffness of the corner brace member is deliberately considered less enough to act as a fuse-like component. An accurate two-dimensional finite element modeling for the geometric and material nonlinearity of such systems considering buckling behavior of the brace members is developed. Through an extensive parametric study, the optimal ratios of the influential parameters of OBS are obtained, and their effects on the nonlinear... 

    3D wind buckling analysis of long steel corrugated silos with vertical stiffeners

    , Article Engineering Failure Analysis ; Volume 90 , 2018 , Pages 156-167 ; 13506307 (ISSN) Maleki, S ; Moazezi Mehretehran, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Thin-walled cylindrical steel silos are susceptible to instability under wind pressure when they are empty or only partially filled. This paper investigates numerically the wind buckling behavior of a real steel corrugated silo with 8.02 m diameter and 17.62 m height, strengthened by open-section vertical stiffeners. Accordingly, comprehensive 3D finite element models were used and detailed linear and non-linear buckling analyses were conducted. The effects of sinusoidal corrugated sheet profile dimensions on this issue were specially explored. Wind load vertical and circumferential distributions were adopted from Eurocode. Two proposed circumferential pressure distributions for an isolated... 

    Numerical Study of the Behavior of Two-Dimensional Materials with Microstructure Bistability

    , M.Sc. Thesis Sharif University of Technology Talebpour Parizi, Mohammad (Author) ; Arghavani Hadi, Jamal (Supervisor)
    Abstract
    In the present study, the energy absorption mechanism is presented that used in two-dimensional microstructures. By studying the angular geometric parameters and the narrow ratio of the tilted members, we can use the property of the geometry of the structure to be bistable. In this way, there can be two stable geometries with different energies, which enters energy into the structure, such as the phase transformation to the second geometry that has more energy. By changing the geometric parameters, the deformed state can be stable or unstable. Because of the complex geometries that exist in this mechanism, additive production methods are more effective than geometric ratios or sharp points... 

    Study the effect of viscoelastic matrix model on the stability of CNT/polymer composites by multiscale modeling

    , Article Polymer Composites ; Volume 30, Issue 11 , 2009 , Pages 1545-1551 ; 02728397 (ISSN) Montazeri, A ; Naghdabadi, R ; Sharif University of Technology
    2009
    Abstract
    In this article, a Molecular Structural Mechanics/Finite Element (MSM/FE) multiscale modeling of carbon nanotube/polymer composites with viscoelastic (VE) polymer matrix is introduced. The nanotube is modeled at the atomistic scale using structural molecular mechanics. The matrix deformation is analyzed by nonlinear finite element method considering VE behavior. The nanotube and matrix are assumed to be bonded by van der Waals interactions based on the Lennard-Jones potential at the interface. Using the MSM/FE multiscale model, we investigate the effect of carbon nanotube (CNT) on the improvement of mechanical stability of the nanocomposite. Also, the buckling behavior of these... 

    Investigating the effect of carbon nanotube defects on the column and shell buckling of carbon nanotube-polymer composites using multiscale modeling

    , Article International Journal for Multiscale Computational Engineering ; Volume 7, Issue 5 , 2009 , Pages 431-444 ; 15431649 (ISSN) Montazeri, A ; Naghdabadi, R ; Sharif University of Technology
    2009
    Abstract
    Carbon nanotube (CNT)-reinforced polymer composites have attracted great attention due to their exceptionally high strength. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. In this article, a new three-phase molecular structural mechanics/finite element (MSM/FE) multiscale model is used to study the effect of CNT vacancy defects on the stability of single-wall (SW) CNT-polymer composites. The nanotube is modeled at the atomistic scale using MSM, whereas the interphase layer and polymer matrix are analyzed by the FE method. The nanotube and polymer matrix are assumed to be bonded by van der Waals interactions... 

    Buckling Analysis of Composite Cylindrical Shells Under External Pressure

    , M.Sc. Thesis Sharif University of Technology Farahbakhshi, Amir (Author) ; Fallah Rajabzadeh, Famida (Supervisor)
    Abstract
    The aim of this project is buckling and post-buckling analysis of laminated composite circular cylindrical shells under external pressure on the basis of different shell theories. Based on Donnell, Love, and Sanders nonlinear shell theories within the first-order shear deformation model and von Karman geometric nonlinearity, the potential energy of composite circular cylindrical shells under external pressure with simply supported edges is extracted and by minimizing of the total potential energy and implementing the Ritz method, buckling pressure, the nonlinear post-buckling analysis and the curves of static equilibrium paths are presented. Furthermore, the effect of the external energy due... 

    3D wind buckling analysis of steel silos with stepped walls

    , Article Thin-Walled Structures ; Volume 142 , 2019 , Pages 236-261 ; 02638231 (ISSN) Maleki, S ; Mehretehran, A. M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Thin-walled cylindrical steel silos are one of the key structures for storage of materials in many industries and agricultural sectors. They are susceptible to instability under wind pressure when they are empty or partially filled. This paper investigates numerically the wind buckling behavior of three sample steel silos with stepped walls composed of isotropic rolled shells. Wind load vertical and circumferential distributions were adopted from Eurocodes. Two proposed circumferential pressure distributions for an isolated silo and a silo in a group with a closed roof were taken into consideration. Moreover, the effect of additional inward pressure, proposed by Eurocode, on buckling... 

    Parametric study of buckling and post-buckling behavior for an aluminum hull structure of a high-aspect-ratio twin hull vessel

    , Article Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment ; Volume 234, Issue 1 , 2020 , Pages 15-25 Soleimani, E ; Tabeshpour, M. R ; Seif, M. S ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    Metal plates are essential parts of structures such as ship hulls and offshore oil platforms. These plates are typically under compressive axial forces. Hence, one of the main mechanisms for failure and collapse of such structures is buckling of plates. Thus, for safe and secure design, buckling strength of plates should be evaluated. Finite element analysis techniques are perfect tools for this purpose because of the accuracy and flexibility for performing simulations with different variables. In this study, the strength of aluminum plates has been studied using finite element analysis software and it was tried to study the influence of variables such as initial imperfections, plate... 

    Buckling of cracked cylindrical thin shells under combined internal pressure and axial compression

    , Article Thin-Walled Structures ; Volume 44, Issue 2 , 2006 , Pages 141-151 ; 02638231 (ISSN) Vaziri, A ; Estekanchi, H. E ; Sharif University of Technology
    2006
    Abstract
    Linear eigenvalue analysis of cracked cylindrical shells under combined internal pressure and axial compression is carried out to study the effect of crack type, size and orientation on the buckling behavior of cylindrical thin shells. Two types of crack are considered; through crack and thumbnail crack. Our calculations indicate that depending on the crack type, length, orientation and the internal pressure, local buckling may precede the global buckling of the cylindrical shell. The internal pressure, in general, increases the buckling load associated with the global buckling mode of the cylindrical shells. In contrast, the effect of internal pressure on buckling loads associated with the... 

    Experimental studies on thin-walled grooved tubes under axial compression

    , Article Experimental Mechanics ; Volume 44, Issue 1 , 2004 , Pages 101-108 ; 00144851 (ISSN) Hosseinipour, S. J ; Daneshi, G. H ; Sharif University of Technology
    SAGE Publications Inc  2004
    Abstract
    We study experimentally the axial crushing behavior and crashworthiness characteristics of thin-walled steel tubes containing annular grooves. The grooves determine the positions of the folds and control the buckling mode of deformation. In the present work we aim to improve the uniformity of the load-displacement behavior and to predict the energy absorption capacity of the tubes. Grooves are cut circumferentially and alternately inside and outside the tubes at predetermined intervals. Quasi-static axial crushing tests are performed with different groove distances. Photographs are taken during axial buckling and the specimens after crushing are sectioned axially to carry out the...