Loading...
Search for: calcite
0.01 seconds
Total 50 records

    Constructing Calcite Core by Microbially Induced Calcite Precipitation (MICP) Usable in Oil and Gas Tests

    , M.Sc. Thesis Sharif University of Technology Ali Doust Salimi, Nazanin (Author) ; Yaghmaei, Soheila (Supervisor) ; Bazargan, Mohammad (Supervisor) ; Ghobadi Nejad, Zahra (Co-Supervisor)
    Abstract
    Acidizing is the most widely performed job to remove the formation damage, and enhance the oil recovery. Different models have been introduced to design the optimized condition for acidizing. However, none of them are able to predict the optimum injection flow rate in the actual application. As a result, Calcite cores are extracted from reservoirs for conducting experiments and modifying the present models. Nevertheless, acidizing is an intrusive technique destroying the costly extracted cores. Thus, there is a need to construct calcite cores of various porosities and permeabilities to take advantage of them in acidizing modelling.Microbially induced calcite precipitation is a well-known... 

    Production of Biodiesel Using Calcite Stone as Support Catalyst

    , M.Sc. Thesis Sharif University of Technology Talebi, Morteza (Author) ; Khorasheh, Farhad (Supervisor) ; Larimi, Afsanehsadat (Supervisor)
    Abstract
    The aim of this study is developing and investigating heterogeneous catalysts based on natural calcite for the transesterification of canola oil and methanol in order to produce biodiesel as a renewable and alternative fuel for fossil fuels. At first calcite was calcined at high temperature to decompose calcium carbonate to calcium oxide. Afterward, Mg-Zr/CaO catalysts were prepared with mass ratio of 2:1 Mg:Zr and different weight percent(2.5, 5,7.5 and 10 wt%) on calcite supported by impregnation method. In order to characterized synthesized catalysts used different analysis such as energy dispersive X-ray (EDX) spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy... 

    Improvement of Collapsible Soils Using Biocementation Method (Case Study of Gorgan Loess)

    , M.Sc. Thesis Sharif University of Technology Aghaie Lahroodi, Mehrdad (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    Collapsible soils have been encountered in many parts of the world such as Gorgan (a city in North of Iran). In these soils, sudden and large volume changes occur while the water content, loading pressure or both, are passed a threshold limit. One of the serious problems that may occur in the structures constructed on collapsible soils is the catastrophic settlements resulting from increase of water content in the soils. In this research, improvement of mechanical properties of loessial collapsible soil taken from Gorgan has been investigated using biocementation method. There are some microbial processes that can lead to biocementation, which one of them is microbially induced calcite... 

    Investigation of Interface Phenomena in Low Salinity/Smart Waterflooding by Applying Molecular Dynamics Simulation

    , Ph.D. Dissertation Sharif University of Technology Badizad, Mohammad Hassan (Author) ; Ayatollahi, Shahab (Supervisor) ; Ghazanfari, Mohammad Hossein (Supervisor) ; Koleini, Mhammad Mehdi (Co-Supervisor)
    Abstract
    Low salinity/smart waterflooding is simple to apply and a promising enhanced oil recovery method in which ion-tuned saltwater is injected into subsurface oil reservoirs. Many aspects of this operation, in particular those pertaining to nano-scale, are not yet fully understood. The present dissertation is an attempt to shed light on the microscopic properties and behavior of rock/brine/oil interfaces throughout low salinity/smart waterflooding. Several simulations were carried out for oil/brine and calcite/brine categories each containing various ions and hydrocarbons compounds. The surface contribution of non-functional oil compounds (aromatics and aliphatics) near brine medium was... 

    The Dynamic Behavior of Calcite Cemented Gravelly Sand – A Case Study of Tehran Soil

    , Ph.D. Dissertation Sharif University of Technology Shakeri, Mohammad Reza (Author) ; Haeri, Mohsen (Supervisor) ; Sajjadi, Ali Akbar (Supervisor)
    Abstract
    An understanding of the effect of degree of cementation on static and dynamic behaviour of cemented soils is becoming increasingly important in design and analysis of geotechnical engineering problems. Naturally cemented coarse-grained soils are widely present in many parts of the world. Misunderstanding of the behaviour of such soils could lead to underestimate or overestimate of the soil parameters. Previous studies conducted by Haeri and his co-workers show that most of the alluvial deposit of Tehran, the capital city of Iran, has a soil with cemented nature. The amount and characteristics of the cementation of the deposit varies in different parts from highly cemented in the north to... 

    The Static Behavior of Calcite Cemented Gravely Sand – Tehran Alluvium Case Study

    , M.Sc. Thesis Sharif University of Technology Adl, Mahmoud Reza (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    An understanding of the effect of degree of cementation on static behavior of cemented soils in becoming increasingly important in design and analysis of geotechnical engineering problems. Naturally cemented coarse-grained soils are widely present in many parts of the world. Misunderstanding of the behavior of such soils could lead to under or overestimate of the soil parameters. Previous studies conducted by Prof. Haeri and his co-workers show that most of the alluvial deposit of Tehran, the capital city of Iran. The amount and characteristics of the cementation of the deposit varies in different parts from highly cemented in the north to non-cemented in the south. This deposit consists of... 

    Wettability alteration of oil-wet carbonate porous media using silica nanoparticles: Electrokinetic characterization

    , Article Industrial and Engineering Chemistry Research ; Volume 58, Issue 40 , 2019 , Pages 18601-18612 ; 08885885 (ISSN) Dehghan Monfared, A ; Ghazanfari, M. H ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Application of nanoparticles for wettability alteration offers a practical approach to resolve some surface-related problems encountered in the nowadays technological process. Examples are underground/subsurface engineering implications, including the enhanced oil recovery from the oil-wet carbonate reservoirs. However, the common wettability evaluating techniques such as contact angle and flotation cannot be representative of the dynamic phenomena occurring at the pore scale and hence are unable to give accurate information about the process. Therefore, in the present work, the electrokinetic evaluations are utilized to explore the wettability alteration of initially oil-wet carbonate rock... 

    Wettability alteration of calcite rock from gas- repellent to gas-wet using a fluorinated nanofluid: A surface analysis study

    , Article Journal of Natural Gas Science and Engineering ; Volume 83 , 2020 Azadi Tabar, M ; Shafiei, Y ; Shayesteh, M ; Dehghan Monfared, A ; Ghazanfari, M. H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Wettability alteration analysis form gas-repellent to gas-wet with the aid of chemical agents has been subjected of numerous studies. However, fundamental understanding of the effect of surface tension of liquid on repellency strength, the change in the intermolecular forces due to the adsorption of nanoparticles onto the rock surfaces, and exposure of treated rock in brine are not well discussed in the available literature. In this study, X-ray diffraction, Atomic Force Microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were applied to characterize the treated and fresh samples. Dynamic and static contact angle measurements were then combined with six methods... 

    Wettability alteration modeling for oil-wet calcite/silica nanoparticle system using surface forces analysis: contribution of DLVO versus non-DLVO interactions

    , Article Industrial and Engineering Chemistry Research ; Volume 57, Issue 43 , 2018 , Pages 14482-14492 ; 08885885 (ISSN) Dehghan Monfared, A ; Ghazanfari, M. H ; Kazemeini, M ; Jamialahmadi, M ; Helalizadeh, A ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    In this work, application of silica nanoparticles for wettability alteration of initially oil-wet calcite was investigated through analysis of surface forces and DLVO theory. Doing so, the wettability and zeta potential of calcite surfaces were measured through the sessile drop method and an in-house experimental setup, respectively. Primary evaluation indicated that incorporating DLVO terms in the Frumkin-Derjaguin model was not sufficient to describe the wettability in an oil-wet calcite/nanofluid system. Sensitivity analysis showed that calculating the double-layer interaction using constant potential-constant potential boundaries along with structural hydrophobic forces (non-DLVO... 

    Using molecular dynamic simulation data of calcite in a wide pressure range to calculate some of its thermodynamic properties via some universal equations of state

    , Article Molecular Physics ; Volume 106, Issue 21-23 , 2008 , Pages 2545-2556 ; 00268976 (ISSN) Akbarzadeh, H ; Shokouhi, M ; Parsafar, G. A ; Sharif University of Technology
    2008
    Abstract
    Molecular dynamics, MD, simulation of calcite (CaCO3) is selected to compare the p-v-T behaviour of some universal equations of state, UEOS, for the temperature range 100 K ≤ T 800 ≤ K, and pressures up to 3000 kbar. The isothermal sets of p-v-T data generated by simulation were each fitted onto some three- and two-parameter EOSs including Parsafar and Mason (PM), Linear Isotherm Regularity (LIR), Birch-Murnaghan (BM), Shanker, Vinet, Baonza and Modified generalized Lennard-Jones (MGLJ) EOSs. It is found that the MD data satisfactorily fit these UEOS with reasonable precision. Some features for a good UEOS criteria such as temperature dependencies of coefficients, pressure deviation,... 

    Theoretical and experimental study of foam stability mechanism by nanoparticles: Interfacial, bulk, and porous media behavior

    , Article Journal of Molecular Liquids ; Volume 304 , 2020 Suleymani, M ; Ghotbi, C ; Ashoori, S ; Moghadasi, J ; Kharrat, R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Foam flooding has been applied as a promising method in enhanced oil recovery to obviate the challenges of gas flooding such as fingering, channeling and overriding. However, long-term foam stability is crucial for mobility control. In this work, the effective mechanisms on foam stability in the presence of CaCO3 nanoparticles were assessed both theoretically and experimentally. The static and dynamic behaviors of cationic surfactant (HTAB) foam in the presence of CaCO3 nanoparticles with different hydrophobicity were evaluated. The CaCO3 nanoparticles were treated with a series of long-chain fatty acids to generate a range of wettability. Afterward, the underlying mechanisms were revealed... 

    The impact of salinity on the interfacial structuring of an aromatic acid at the calcite/brine interface: an atomistic view on low salinity effect

    , Article Journal of Physical Chemistry B ; Volume 124, Issue 1 , December , 2020 , Pages 224-233 Koleini, M. M ; Badizad, M. H ; Hartkamp, R ; Ayatollahi, S ; Ghazanfari, M. H ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    This study aims to elucidate the impact of salinity on the interactions governing the adsorption of polar aromatic oil compounds onto calcite. To this end, molecular dynamics simulations were employed to assess adsorption of a model polar organic molecule (deprotonated benzoic acid, benzoate) on the calcite surface in NaCl brines of different concentration levels, namely, deionized water (DW), low-salinity water (LS, 5000 ppm), and sea water (SW; 45,000 ppm). Calcite was found to be completely covered by several well-ordered water layers. The top hydration layer is very compact and prevents direct adsorption of benzoates onto the substrate. Instead, Na+ ions form a distinct positively... 

    The impact of salinity on ionic characteristics of thin brine film wetting carbonate minerals: An atomistic insight

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 571 , 2019 , Pages 27-35 ; 09277757 (ISSN) Koleini, M. M ; Badizad, M. H ; Kargozarfard, Z ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Connate water has been coexisting with oil and mineral for centuries within underground reservoirs. The oil recovery techniques, such as low salinity water injection, disturb this prolonged equilibrium state of oil/brine/rock system. However, a thorough understanding of this complex equilibrium in the reservoir is still lacking. In this study, we performed molecular dynamics simulations to provide quantitative comprehension of the thin brine film characteristics that wets carbonate reservoir rocks at molecular level. While an electric double layer is formed at the interface of calcite/low salinity water, the ions in the high saline water form several aggregates of ions. We found that these... 

    The effect of pH and ionic strength on the transport of alumina nanofluids in water-saturated porous media: Experimental and modeling study

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 137, Issue 4 , 2019 , Pages 1169-1179 ; 13886150 (ISSN) Zareei, M ; Yoozbashizadeh, H ; Madaah Hosseini, H. R ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    Alumina nanofluids are one of the most useful nanofluids, especially for increasing the thermal conductivity. Due to importance of porous media in the improvement of heat transfer, this study investigates the transport and retention of gamma alumina/water nanofluid in the water-saturated porous media. For this purpose, alumina nanofluids were introduced to the porous media consisting of water-saturated glass beads possessing various pH values (4, 7 and 10) and different ionic strengths (0.001 M of KCl, CaCl2, AlCl3, K2SO4, CaSO4, Al2(SO4)3, K2CO3 and CaCO3). Then the break through curve of each experiment was drawn and modeled by combining classical filtration theory with... 

    The effect of calcite cementation on the mechanical behavior of gravely sands

    , Article 14th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, 23 May 2011 through 27 May 2011, Hong Kong ; 2011 Adl, M. R ; Sharif University of Technology
    Abstract
    The behavior of a cemented gravely sand is studied using triaxial tests. Undrained tests were performed on saturated specimens, and stress-strain characteristics of the soil, along with volumetric and pore pressure changes, were recognized. Artificially cemented samples are prepared using calcite crystallization as the cementing agent in different percentages. The tests were done in usual range of confining pressures, from 50 to 1200 kPa. The results shows that dilation occurs even at highest confining pressure and least cement content. Also the friction angle of soils increases slightly with cement content, but cohesion intercept increasing is more noticeable  

    Synthesis and polymorph controlling of calcite and aragonite calcium carbonate nanoparticles in a confined impinging-jets reactor

    , Article Chemical Engineering and Processing - Process Intensification ; 2020 Adavi, K ; Molaei Dehkordi, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this article, a confined-impinging-jets reactor (CIJR) was designed and tested successfully for the synthesis of calcium carbonate nanoparticles using the reactive precipitation method. The proposed CIJR comprised of two opposed nozzles placed in a cylindrical chamber. Effects of various operating and design parameters such as supersaturation, feed flow rate, nozzle diameter, reactor diameter, operating temperature, and surface-active agents on the mean particle size, particle size distribution, and the polymorphs of calcium carbonate nanoparticles were investigated carefully. By changing the supersaturation, reactor diameter, jets velocity, operating temperature, and the nozzle diameter,... 

    Synthesis and polymorph controlling of calcite and aragonite calcium carbonate nanoparticles in a confined impinging-jets reactor

    , Article Chemical Engineering and Processing - Process Intensification ; Volume 159 , 2021 ; 02552701 (ISSN) Adavi, K ; Molaei Dehkordi, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this article, a confined-impinging-jets reactor (CIJR) was designed and tested successfully for the synthesis of calcium carbonate nanoparticles using the reactive precipitation method. The proposed CIJR comprised of two opposed nozzles placed in a cylindrical chamber. Effects of various operating and design parameters such as supersaturation, feed flow rate, nozzle diameter, reactor diameter, operating temperature, and surface-active agents on the mean particle size, particle size distribution, and the polymorphs of calcium carbonate nanoparticles were investigated carefully. By changing the supersaturation, reactor diameter, jets velocity, operating temperature, and the nozzle diameter,... 

    Synthesis and polymorph controlling of calcite and aragonite calcium carbonate nanoparticles in a confined impinging-jets reactor

    , Article Chemical Engineering and Processing - Process Intensification ; Volume 159 , 2021 ; 02552701 (ISSN) Adavi, K ; Molaei Dehkordi, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this article, a confined-impinging-jets reactor (CIJR) was designed and tested successfully for the synthesis of calcium carbonate nanoparticles using the reactive precipitation method. The proposed CIJR comprised of two opposed nozzles placed in a cylindrical chamber. Effects of various operating and design parameters such as supersaturation, feed flow rate, nozzle diameter, reactor diameter, operating temperature, and surface-active agents on the mean particle size, particle size distribution, and the polymorphs of calcium carbonate nanoparticles were investigated carefully. By changing the supersaturation, reactor diameter, jets velocity, operating temperature, and the nozzle diameter,... 

    Stick-slip behavior of sessile drop on the surfaces with irregular roughnesses

    , Article Chemical Engineering Research and Design ; Volume 160 , 2020 , Pages 216-223 Azadi Tabar, M ; Shayesteh, M ; Shafiei, Y ; Ghazanfari, M. H ; Sharif University of Technology
    Institution of Chemical Engineers  2020
    Abstract
    In this work, sessile drop and low-bond axisymmetric drop shape analysis methods were coupled to provide some new aspects on stick-slip behavior as well as stick time of a drop on calcite surfaces. Slightly hydrophobic calcite surfaces typified with three irregular roughnesses were used to create irregular surfaces to mimic defects for the water-calcite-air systems. Polishing papers of 200, 600, and 1200 grit and a polishing machine were used to prepare surfaces. X-ray diffraction, energy dispersive X-ray spectroscopy, Fourier transform infrared, and atomic force microscopy techniques were employed to evaluate the chemical and physical properties of surfaces. A model was developed to predict... 

    Static and dynamic behavior of foam stabilized by modified nanoparticles: Theoretical and experimental aspects

    , Article Chemical Engineering Research and Design ; Volume 158 , 2020 , Pages 114-128 Suleymani, M ; Ashoori, S ; Ghotbi, C ; Moghadasi, J ; Kharrat, R ; Sharif University of Technology
    Institution of Chemical Engineers  2020
    Abstract
    Gas flooding is a practical secondary scenario for enhanced oil recovery. Channeling and fingering of the injected gas are the major problems facing this technique. These challenges can be mitigated by the injection of gas as foam. However, foam stability influences the overall efficiency of the process, which could be improved by nanoparticles (NPs). This work provides a theoretical and experimental analysis of the NPs wettability effects on foam behavior, in both static and dynamic states. The treated calcite (CaCO3) NPs along with a cationic surfactant (HTAB) were used for this purpose. By comparison of theoretical and experimental data, it was shown that the foam stability in the...