Loading...
Search for: calculation
0.008 seconds
Total 401 records

    An experimental and theoretical study on the structure and photoactivity of XFe2O4 (X = Mn, Fe, Ni, Co, and Zn) structures1

    , Article Russian Journal of Physical Chemistry A ; Volume, 88, Issue 13 , December , 2014 , pp. 2451-2461 ; 1531-863X Padervand, M ; Vossoughi, M ; Yousefi, H ; Salari, H ; Gholami, M. R. (Mohammad Reza) ; Sharif University of Technology
    Abstract
    XFe2O4 magnetic nanoparticles (X = Mn, Fe, Co, Ni, and Zn) were prepared by using two methods: coprecipitation and hydrothermal. The synthesized nanoparticles were compared according to the separation in an external magnetic field and finally, the hydrothermal method was specified as a better synthesis method. The magnetic nanoparticles were characterized by physico-chemical analysis methods such as Vibrating Sample Magnetometer (VSM), X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), nitrogen adsorption-adsorption isotherm and Transmission Electron Microscopy (TEM). Magnetic properties of synthesized nanoparticles were studied by ab-initio theoretical methods to... 

    A joint experimental and theoretical study of kinetic and mechanism of rearrangement of allyl p-tolyl ether

    , Article Journal of Molecular Structure: THEOCHEM ; Volume 893, Issues 1–3 , January , 2009 , Pages 73–76 Irani, M. (Mehdi) ; Haqgu, M. (Mohammad) ; Talebi, A ; Gholami, M. R. (Mohammad Reza) ; Sharif University of Technology
    Abstract
    A joint theoretical and experimental study of the kinetic and mechanism of the rearrangement of allyl p-tolyl ether was performed in order to study the kinetic and mechanism of the reaction. Experimental studies were performed in gas phase over a temperature range of 493.15–533.15 K. The experimental Arrhenius parameters of this reaction were measured to be Ea = 36.08 kcal mol−1, ΔS# = −7.88 cal mol−1 K−1, and Log A = 11.74, experimentally. Using GC for the mixture of the reaction with and without cyclohexene demonstrated that the reaction is clean without any radical intermediates. The experimental results show that the studied reaction is unimolecular and proceeds through a concerted... 

    Exploration of temperature constraints for thermal aware mapping of 3D networks on chip

    , Article Proceedings - 20th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, PDP 2012 ; 15-17 February , 2012 , pp. 499-506 ; ISBN: 9780769546339 Hamedani, P. K ; Hessabi, S ; Sarbazi-Azad, H ; Jerger, N. E ; Sharif University of Technology
    Abstract
    This paper proposes three ILP-based static thermalaware mapping algorithms for 3D Networks on Chip (NoC) to explore the thermal constraints and their effects on temperature and performance. Through complexity analysis, we show that the first algorithm, an optimal one, is not suitable for 3D NoC. Therefore, we develop two approximation algorithms and analyze their algorithmic complexities to show their proficiency. As the simulation results show, the mapping algorithms that employ direct thermal calculation to minimize the temperature reduce the peak temperature by up to 24% and 22%, for the benchmarks that have the highest communication rate and largest number of tasks, respectively. This... 

    Leader connectivity management and flocking velocity optimization using the particle swarm optimization method

    , Article Scientia Iranica ; Vol. 19, Issue 5 , 2012 , pp. 1251-1257 ; ISSN: 10263098 Etemadi, S ; Vatankhah, R ; Alasty, A ; Vossough,i G. R ; Boroushaki M ; Sharif University of Technology
    Abstract
    Flocking through leader following structures in mobile networks raises attractive control problems. Due to limited sensing radii, leaders locally influence a network of agents. In this paper, we consider the problem of real-time maximization of flocking velocity. By using local information and a Particle-Swarm-Optimization (PSO) algorithm, a Leader Agent (LA) actively motivates flocking at high speed. The LA manages topology of the network in its neighborhood and increases flocking velocity. PSO output quality and calculation costs show that the proposed optimization algorithm is practically feasible. A case-study is also presented  

    A novel iron complex containing an N,O-type bidentate oxazoline ligand: Synthesis, X-ray studies, DFT calculations and catalytic activity

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Vol. 133, issue , Jun , 2014 , p. 432-438 Amini, M ; Arab, A ; Derakhshandeh, P. G ; Bagherzadeh, M ; Ellern, A ; Woo, L. K ; Sharif University of Technology
    Abstract
    A five-coordinated Fe(III) complex with the distorted trigonal bipyramidal configuration was synthesized by reactions of FeCl36H2O and 2-(2′-hydroxyphenyl)oxazoline (Hphox) as a bidentate ON donor oxazoline ligand. Complex [Fe(phox)2Cl] was fully characterized, including by single-crystal X-ray structure analysis. DFT calculations were accompanied with experimental results in order to obtain a deeper insight into the electronic structure and vibrational normal modes of complex. Oxidation of sulfides to sulfoxides in one-step was conducted by this complex as catalyst using urea hydrogen peroxide (UHP) in mixture of CH2Cl 2/CH3OH (1:1) under air at room temperature. The results show that using... 

    On the isobaric specific heat capacity of natural gas

    , Article Fluid Phase Equilibria ; Vol. 384, issue , 2014 , pp. 16-24 ; ISSN: 03783812 Jarrahian, A ; Karami, H. R ; Heidaryan, E ; Sharif University of Technology
    Abstract
    A colorimeter equipped with a gas booster in conjunction with a PVT cell was used to measure the heat capacity of natural gas with different amounts of impurities. Based on new experimental and literature data, a general investigation of the isobaric specific heat capacity was carried out using the Jarrahian-Heidaryan equation of state (J-H-EOS). A model was obtained that is valid in wide ranges of pressures (0.1-40. MPa) and temperatures (250-414. K). The arithmetic average of the model's absolute error is acceptable in engineering calculations and has superiority over other methods in its class  

    Investigation of intense femto-second laser ionization and dissociation of methane with time-dependent density-functional approach

    , Article Chemical Physics Letters ; Vol. 604 , 2014 , Pages 60-67 ; ISSN: 00092614 Irani, E ; Sadighi Bonabi, R ; Anvari, A ; Sharif University of Technology
    Abstract
    Three dimensional calculations of electronic dynamics of CH4 in a strong laser field are presented with time-dependent density-functional theory. Time evolution of dipole moment and electron localization function is presented. The dependence of dissociation rate on the laser characters is shown and optimal effective parameters are evaluated. The optimum field leads to 76% dissociation probability for Gaussian envelope and 40 fs (FWHM) at 10 16 W cm-2. The dissociation probability is calculated by optimum convolution of dual short pulses. By combining of field assisted dissociation process and Ehrenfest molecular dynamics, time variation of bond length, velocity and orientation effect are... 

    Experimental and theoretical study of the spectroscopic properties and the preparation of 3-benzyl-2H-pyrano[3,2-c]chromene-2,5(6H)-dione

    , Article Journal of Molecular Structure ; Vol. 1065-1066, issue. 1 , May , 2014 , pp. 235-240 ; ISSN: 00222860 Moghaddam, F. M ; Foroushani, B. K ; Sharif University of Technology
    Abstract
    Compound 3-benzyl-2H-pyrano[3,2-c]chromene-2,5(6H)-dione(3), was prepared and fully characterized. The vibrational modes (FT-IR) and NMR data ( 1H and 13C chemical shifts) were compared with the results of Density Functional Theory (DFT) method at the B3LYP/cc-PVTZ level. The calculated vibrational frequencies and NMR chemical shifts are in good agreement with the experimental results. The electronic (UV-Vis) spectrum was calculated using the TD-DFT method in CH2Cl2 with the Polarizable Continuum Model using the integral equation formalism variant (IEFPCM) and was correlated to the experimental spectra. The assignment and analysis of the frontier HOMO and LUMO orbitals indicate that... 

    Structural analysis of Y3Ba5Cu8O 19-δ high-Tc superconductor by ab initio density functional theory

    , Article Physica C: Superconductivity and its Applications ; Volume 497 , 15 February , 2014 , 2014, Pages 84-88 ; ISSN: 09214534 Khosroabadi, H ; Rasti, M ; Akhavan, M ; Sharif University of Technology
    Abstract
    The details of the crystal structure of the recently discovered Y 3Ba5Cu8O18+δ (Y358) superconductor have been determined by ab initio density functional theory. Total energy calculation has been performed for three different suggested structures with different oxygen content. The structure with a center of inversion symmetry and the highest oxygen concentration has the lowest total energy. Thus, it is the best choice for the Y358 crystal structure. By investigating the detailed structure, it is seen that this compound is arranged either of YBa2Cu3O7 and YBaCu2O 5 or YBaCu2O5 and BaCuO2 substructural blocks in the c direction. The difference between the total energy of Y358 compound and the... 

    Production of Cu-TiC nanocomposite using mechanical alloying route

    , Article Advanced Materials Research ; Vol. 829, issue , 2014 , pp. 572-576 ; ISSN: 10226680 Bagheri, G. A ; Abachi, P ; Purazrang, K ; Rostami, A ; Sharif University of Technology
    Abstract
    In this study, Cu-TiC nanocomposites were produced by high energy ball milling of elemental powders and in-situ formation of TiC in the copper matrix. Cu-40wt% Ti powder mixture were milled for 60 h, then graphite powder was added, subsequently milling was continued for further 10 h. Based on theoretical calculations, at this composite, the amount of TiC as reinforcement should be 60.25vol% (45.47wt%). The effect of milling time on solution progress of titanium in the copper lattice was studied by X-Ray diffraction analysis (XRD) with CuKα radiation. Considering XRD of Cu-40wt%TiC after 60 h milling data and Williamson-Hall relation, crystallite size and lattice strain of copper were... 

    Development of a new workflow for pseudo-component generation of reservoir fluid detailed analysis: A gas condensate case study

    , Article International Journal of Oil, Gas and Coal Technology ; Vol. 7, Issue. 3 , 2014 , pp. 275-297 ; ISSN: 1753-3317 Assareh, M ; Pishvaie, M. R ; Ghotbi, C ; Mittermeir, G. M ; Sharif University of Technology
    Abstract
    In this work, a new automatic workflow for accurate optimal pseudo-component generation from gas condensate mixtures with a large number of components is presented. This workflow has a good insight into thermo-physical and critical properties and introduces only a small amount of loss of information and EOS flexibility. In this regard, the fuzzy clustering is used to classify the components in the mixture based on the similarities in the critical properties. The mixing rules are then applied to find group properties. Two different approaches for components association in clustering process are investigated with several numbers of groups. The mathematical validity of the groups is controlled... 

    Chaos prediction in MEMS-NEMS resonators

    , Article International Journal of Engineering Science ; Vol. 82 , 2014 , pp. 74-83 ; ISSN: 00207225 Maani Miandoab, E ; Pishkenari, H. N ; Yousefi-Koma, A ; Tajaddodianfar, F ; Sharif University of Technology
    Abstract
    Different nonlinearities in micro-electro-mechanical resonators lead to various nonlinear behaviors such as chaotic motion which can affect the resonator performance. As a result, it is important to properly identify and analyze the chaotic regions in resonators. In this paper, a novel method is proposed for prediction of the chaos in the micro- and nano-electro-mechanical resonators. Based on the proposed method, first an accurate analytical solution for the dynamics behavior of the nano-resonators is derived using the multiple scales method up to the second order. The results obtained by this analytical solution are validated by comparing them with the numerical ones. Using the analytical... 

    A mechanistic study of nanoscale structure development, phase transition, morphology evolution, and growth of ultrathin barium titanate nanostructured films

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Vol. 45, issue. 9 , August , 2014 , pp. 4138-4154 ; ISSN: 1073-5623 Ashiri, R ; Sharif University of Technology
    Abstract
    In the present work, an improved method is developed for preparing highly pure ultrathin barium titanate nanostructured films with desired structural and morphological characteristics. In contrast to other approaches, our method can be carried out at a relatively lower temperature to obtain barium titanate ultrathin films free from secondary phases, impurities, and cracks. To reach an in-depth understanding of scientific basis of the proposed process, and in order to disclose the mechanism of formation and growth of barium titanate ultrathin film, in-detail analysis is carried out using XRD, SEM, FE-SEM, and AFM techniques aided by theoretical calculations. The effects of calcining... 

    Calculation of VVER-1000 reactor scaling factor for inference of core barrel motion

    , Article Annals of Nuclear Energy ; Vol. 63 , 2014 , pp. 205-208 ; ISSN: 03064549 Fallah, V. F ; Vosoughi, N ; Sharif University of Technology
    Abstract
    To quantify the core barrel motion (CBM) in a pressurized water reactor, a scaling factor can be calculated to convert the Root Mean Square (RMS) value of the ex-core signals (%) to the core barrel motion amplitude (mil) (Thompson et al., 1980). In the current paper, a scaling factor is calculated using the direct and adjoint methods for a typical VVER-1000 reactor. The scaling factor is calculated using the perturbed parameters that result from CBM. The results show that the calculated scaling factors are not the same in one and two-dimensional modeling, and strongly depend on the ex-core detector location. The linearity assumption of relative detector response versus the small displacement... 

    A simple correlation to estimate natural gas thermal conductivity

    , Article Journal of Natural Gas Science and Engineering ; Volume 18 , May , 2014 , Pages 446-450 ; ISSN: 18755100 Jarrahian, A ; Heidaryan, E ; Sharif University of Technology
    Abstract
    A general investigation of the thermal conductivity of natural gas as a function of temperature, pressure and composition was carried out to develop a generalized correlation. The model obtained was based on 731 data points of 42 binary mixtures in wide ranges of pressures (0.1-300MPa), temperatures (220-425K) and specific gravities (0.626-1.434). Correction terms for non-hydrocarbons of carbon dioxide and nitrogen were up to 87.8 and 82.8 of mole percent, respectively. The arithmetic average of the model's absolute error was found to be 5.69%, which is acceptable in engineering calculations  

    Performance calculations within the conceptual design process of hand-launched aircraft

    , Article Applied Mechanics and Materials ; Vol. 629, issue , October , 2014 , p. 145-151 Nadji, M ; Banazadeh, A ; Sharif University of Technology
    Abstract
    Matching diagram is a key part of the conceptual design process to determine the wing area and the required power. However, it requires drag polar estimation and the assumption of maximum lift coefficient. In case of conventional manned aircraft, early estimation techniques are based on statistical data that are not suitable for hand-launched aircraft. In this study, it has been attempted to present the performance calculations and a proper conceptual design model by acquiring sound values for the aerodynamic coefficients in low Reynolds number, using statistical wetted area as well as a raw design of fuselage, wing and tails. The process is applied to a sample scenario and the results are... 

    Direct approach in computing robust Nash strategies for generating companies in electricity markets

    , Article International Journal of Electrical Power and Energy Systems ; Vol. 54, issue , 2014 , p. 442-453 Langary, D ; Sadati, N ; Ranjbar, A. M ; Sharif University of Technology
    Abstract
    Supply function equilibrium (SFE) is often used to describe the behavior of generating companies in electricity markets. However, comprehensive analytical description of supply function models is rarely available in the literature. In this paper, using some analytical calculations, a novel direct approach is proposed to compute the Nash equilibrium (NE) of the supply function model under uniform marginal pricing mechanism. An explicit mathematical proof for its existence and uniqueness is also presented. The proposed methodology is then generalized to accommodate practical market constraints. In addition, a new concept of robust NE is introduced and calculated based on this approach.... 

    High pressure effects on electronic and magnetic properties of LaOFeAs superconductor

    , Article Journal of Superconductivity and Novel Magnetism ; Vol. 27, issue. 7 , 2014 , p. 1689-1692 Khosroabadi, H ; Sandoghchi, M ; Akhavan, M ; Sharif University of Technology
    Abstract
    The effect of pressure has been studied on structural and electronic properties of LaOFeAs high-T c superconductor by ab initio density functional theory by using pseudopotential Quantum Espresso code. The lattice parameters and ionic positions in the ambient pressure and some high pressure up to 20 GPa have been calculated. The obtained data versus the simple scaling relation for the ionic positions and distances for mechanical pressures have been discussed. The results of band structure and magnetic moment calculations of this compound versus the applied pressure are presented in this paper. The results are compared with the other experimental and computational data in the literature  

    Tunable spontaneous emission from layered graphene/dielectric tunnel junctions

    , Article IEEE Journal of Quantum Electronics ; Vol. 50, issue. 5 , 2014 , p. 307-313 Khorasani, S. A ; Sharif University of Technology
    Abstract
    There has been a rapidly growing interest in optoelectronic properties of graphene and associated structures. Despite the general belief on absence of spontaneous emission in graphene, which is normally attributed to its unique ultrafast carrier momentum relaxation mechanisms, there exist a few recent evidences of strong optical gain and spontaneous light emission from monolayer graphene, supported by observations of dominant role of out-of-plane excitons in polycyclic aromatic hydrocarbons. In this paper, we develop a novel concept of light emission and optical gain from simple vertical graphene/dielectric tunnel junctions. It is theoretically shown that the possible optical gain or... 

    Development of a water brake dynamometer with regard to the modular product design methodology

    , Article ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis, ESDA 2014 ; Vol. 1, issue , July , 2014 , 25–27 Torabnia, S ; Banazadeh, A ; Sharif University of Technology
    Abstract
    This paper summarizes a research project in the field of design and manufacturing of a water brake dynamometer for power testing facilities. In the current study, the design process of a water brake with drilled rotor disks is presented. This process is examined against the development of a water brake for a 4MW gas turbine power measurement at 15,000 RPM speed. The proposed algorithm is based on vital assumptions such as; applying product designing issues and limited modular analysis that urges the disciplinary attitude and leads to the possibility of rapid development, easy maintenance and ease of access. The final scheme is divided into six disciplines with functional classification....