Loading...
Search for: cancer-therapy
0.007 seconds
Total 34 records

    Polymer-functionalized carbon nanotubes in cancer therapy: A review

    , Article Iranian Polymer Journal (English Edition) ; Vol. 23, issue. 5 , May , 2014 , p. 387-403 Eskandari, M ; Hosseini, S. H ; Adeli, M ; Pourjavadi, A ; Sharif University of Technology
    Abstract
    The increasing importance of nanotechnology in the field of biomedical applications has encouraged the development of new nanomaterials endowed with multiple functions. Novel nanoscale drug delivery systems with diagnostic, imaging and therapeutic properties hold many promises for the treatment of different types of diseases, including cancer, infection and neurodegenerative syndromes. Carbon nanotubes (CNTs) are both low-dimensional sp2 carbon nanomaterials exhibiting many unique physical and chemical properties that are interesting in a wide range of areas including nanomedicine. Since 2004, CNTs have been extensively explored as drug delivery carriers for the intracellular transport of... 

    Magnetic nanoparticles-loaded PLA/PEG microspheres as drug carriers

    , Article Journal of Biomedical Materials Research - Part A ; Vol. 103, issue. 5 , SEP , 2014 , p. 1893-1898 Frounchi, M ; Shamshiri, S ; Sharif University of Technology
    Abstract
    Surface-modified magnetite (Fe3O4) nanoparticles with an average size of 22 nm were prepared. The nanoparticles had a saturation magnetization of 50.7 emu g-1. Then magnetite and drug-loaded microspheres of poly (lactic acid)/poly (ethylene glycol) were prepared at various compositions. The microspheres were spherical in shape and had smooth surface. The diameter size of the microspheres ranged between about 0.2 and 4 μm. Doxorubicin hydrochloride for cancer treatment was the drug that loaded into the microspheres. The prepared microspheres were characterized by FTIR, XRD, VSM, SEM and drug-release measurements. It was found that the drug cumulative release percentage was proportional to... 

    Core-shell γ-Fe2O3/SiO2/PCA/Ag-NPs hybrid nanomaterials as a new candidate for future cancer therapy

    , Article International Journal of Nanoscience ; Vol. 13, issue. 1 , February , 2014 Soleyman, R ; Pourjavadi, A ; Masoud, N ; Varamesh, A ; Sharif University of Technology
    Abstract
    In the current study, γ-Fe2O3/SiO 2/PCA/Ag-NPs hybrid nanomaterials were successfully synthesized and characterized. At first, prepared γ-Fe2O3 core nanoparticles were modified by SiO2 layer. Then they were covered by poly citric acid (PCA) via melting esterification method as well. PCA shell acts as an effective linker, and provides vacancies for conveying drugs. Moreover, this shell as an effective capping agent directs synthesis of silver nanoparticles (Ag-NPs) via in situ photo-reduction of silver ions by sunlight-UV irradiation. This system has several benefits as a suitable cancer therapy nanomaterial. Magnetic nanoparticles (MNPs) can guide Ag-NPs and drugs to cancer cells and then... 

    Graphene nanomesh promises extremely efficient in vivo photothermal therapy

    , Article Small ; Volume 9, Issue 21 , 2013 , Pages 3593-3601 ; 16136810 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2013
    Abstract
    Reduced graphene oxide nanomesh (rGONM), as one of the recent structures of graphene with a surprisingly strong near-infrared (NIR) absorption, is used for achieving ultraefficient photothermal therapy. First, by using TiO2 nanoparticles, graphene oxide nanoplatelets (GONPs) are transformed into GONMs through photocatalytic degradation. Then rGONMs functionalized by polyethylene glycol (PEG), arginine-glycine-aspartic acid (RGD)-based peptide, and cyanine 7 (Cy7) are utilized for in vivo tumor targeting and fluorescence imaging of human glioblastoma U87MG tumors having ανβ3 integrin receptors, in mouse models. The rGONM-PEG suspension (1 μg mL -1) exhibits about 4.2- and 22.4-fold higher NIR... 

    The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy

    , Article Journal of Materials Chemistry ; Volume 22, Issue 27 , 2012 , Pages 13773-13781 ; 09599428 (ISSN) Akhavan, O ; Ghaderi, E ; Aghayee, S ; Fereydooni, Y ; Talebi, A ; Sharif University of Technology
    RSC  2012
    Abstract
    A single-step green method for effective reduction and functionalization of graphene oxide (GO) by glucose was developed. Then, efficacy of the glucose-reduced GO sheets in photothermal therapy of LNCaP prostate cancer cells was investigated in vitro. The GO suspension reduced and functionalized by glucose in the presence of Fe catalyst showed a biocompatible property with an excellent near-infrared (NIR) photothermal therapy efficiency better than hydrazine-reduced GO, single-wall and multi-wall carbon nanotube suspensions which even showed some levels of toxicities. For complete destruction of the cancer cells at some time intervals of NIR irradiation (e.g., 0.5 and 12 min with a power... 

    Synthesis of new hybrid nanomaterials: Promising systems for cancer therapy

    , Article Nanomedicine: Nanotechnology, Biology, and Medicine ; Volume 7, Issue 6 , 2011 , Pages 806-817 ; 15499634 (ISSN) Adeli, M ; Kalantari, M ; Parsamanesh, M ; Sadeghi, E ; Mahmoudi, M ; Sharif University of Technology
    2011
    Abstract
    Polyrotaxanes consisting of cyclodextrin rings, polyethylene glycol axes and quantum dot (QD) stoppers were synthesized and characterized. The molecular self-assembly of polyrotaxanes led to spindlelike nano-objects whose shape, size and position were dominated by QD stoppers. Due to their well-defined molecular self-assemblies, carbohydrate backbone, high functionality and several types of functional groups together with the high luminescence yield, synthesized hybrid nanostructures were recognized as promising candidates for biomedical applications. The potential applications of the molecular self-assemblies as drug-delivery systems was investigated by conjugation of doxorubicin (DOX) to... 

    Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy

    , Article Advanced Drug Delivery Reviews ; Volume 63, Issue 1-2 , January–February , 2011 , Pages 24-46 ; 0169409X (ISSN) Mahmoudi, M ; Sant, S ; Wang, B ; Laurent, S ; Sen, T ; Sharif University of Technology
    2011
    Abstract
    At present, nanoparticles are used for various biomedical applications where they facilitate laboratory diagnostics and therapeutics. More specifically for drug delivery purposes, the use of nanoparticles is attracting increasing attention due to their unique capabilities and their negligible side effects not only in cancer therapy but also in the treatment of other ailments. Among all types of nanoparticles, biocompatible superparamagnetic iron oxide nanoparticles (SPIONs) with proper surface architecture and conjugated targeting ligands/proteins have attracted a great deal of attention for drug delivery applications. This review covers recent advances in the development of SPIONs together... 

    In situ forming interpenetrating hydrogels of hyaluronic acid hybridized with iron oxide nanoparticles

    , Article Biomaterials Science ; Volume 3, Issue 11 , Aug , 2015 , Pages 1466-1474 ; 20474830 (ISSN) Kheirabadi, M ; Shi, L ; Bagheri, R ; Kabiri, K ; Hilborn, J ; Ossipov, D. A ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Four derivatives of hyaluronic acid (HA) bearing thiol (HA-SH), hydrazide (HA-hy), 2-dithiopyridyl (HA-SSPy), and aldehyde groups (HA-al) respectively were synthesized. Thiol and 2-dithiopyridyl as well as hydrazide and aldehyde make up two chemically orthogonal pairs of chemo-selective functionalities that allow in situ formation of interpenetrating (IPN) disulfide and hydrazone networks simultaneously upon the mixing of the above derivatives at once. The formation of IPN was demonstrated by comparing it with the formulations of the same total HA concentration but lacking one of the reactive components. The hydrogel composed of all four components was characterized by a larger elastic... 

    Nanomedicine applications in orthopedic medicine: State of the art

    , Article International Journal of Nanomedicine ; Volume 10 , 2015 , Pages 6039-6054 ; 11769114 (ISSN) Mazaheri, M ; Eslahi, N ; Ordikhani, F ; Tamjid, E ; Simchi, A ; Sharif University of Technology
    Dove Medical Press Ltd  2015
    Abstract
    The technological and clinical need for orthopedic replacement materials has led to significant advances in the field of nanomedicine, which embraces the breadth of nanotechnology from pharmacological agents and surface modification through to regulation and toxicology. A variety of nanostructures with unique chemical, physical, and biological properties have been engineered to improve the functionality and reliability of implantable medical devices. However, mimicking living bone tissue is still a challenge. The scope of this review is to highlight the most recent accomplishments and trends in designing nanomaterials and their applications in orthopedics with an outline on future directions... 

    Folate-receptor-targeted delivery of doxorubicin using polyethylene glycol-functionalized gold nanoparticles

    , Article Industrial and Engineering Chemistry Research ; Volume 49, Issue 4 , 2010 , Pages 1958-1963 ; 08885885 (ISSN) Asadishad, B ; Vossoughi, M ; Alemzadeh, I ; Sharif University of Technology
    Abstract
    Doxorubicin-loaded nanocarriers were produced employing folate-modified polyethylene glycol (PEG)-functionalized gold nanoparticles for targeted delivery to positive folate-receptor cancer cells. Doxorubicin and folate were, respectively, conjugated to activated-folate and activated-PEG. The conjugates formed doxorubicin nanocarrier with an average size of 12 nm in diameter. The drug release response of functionalized gold nanoparticles was characterized by an initial rapid drug release followed by a controlled release. The doxorubicin nanocarriers showed higher cytotoxic effect on folate-receptor-positive cells (KB cells) than folatereceptor-negative cells (A549 cells). Cell viability in... 

    Graphene/cobalt nanocarrier for hyperthermia therapy and MRI diagnosis

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 146 , 2016 , Pages 271-279 ; 09277765 (ISSN) Hatamie, S ; Ahadian, M. M ; Ghiass, M. A ; Iraji zad, A ; Saber, R ; Parseh, B ; Oghabian, M. A ; Shanehsazzadeh, S ; Sharif University of Technology
    Elsevier 
    Abstract
    Graphene/cobalt nanocomposites are promising materials for theranostic nanomedicine applications, which are defined as the ability to diagnose, provide targeted therapy and monitor the response to the therapy. In this study, the composites were synthesized via chemical method, using graphene oxide as the source material and assembling cobalt nanoparticles of 15 nm over the surface of graphene sheets. Various characterization techniques were then employed to reveal the morphology, size and structure of the nanocomposites, such as X-ray diffraction analysis, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, high resolution transmission electron microscopy and... 

    Microfluidic manipulation of Core/Shell nanoparticles for oral delivery of chemotherapeutics: A new treatment approach for colorectal cancer

    , Article Advanced Materials ; Volume 28, Issue 21 , 2016 , Pages 4134-4141 ; 09359648 (ISSN) Hasani Sadrabadi, M. M ; Taranejoo, S ; Dashtimoghadam, E ; Bahlakeh, G ; Majedi, F.S ; Vandersarl, J. J ; Janmaleki, M ; Sharifi, F ; Bertsch, A ; Hourigan, K ; Tayebi, L ; Renaud, P ; Jacob, K. I ; Sharif University of Technology
    Wiley-VCH Verlag 
    Abstract
    A microfluidics approach to synthesize core-shell nanocarriers with high pH tunability is described. The sacrificial shell protects the core layer with the drugs and prevents their release in the severe pH conditions of the gastrointestinal tract, while allowing for drug release in the proximity of a tumor. The proposed nanoparticulate drug-delivery system is designed for the oral administration of cancer therapeutics  

    Anti-HER2 VHH targeted magnetoliposome for intelligent magnetic resonance imaging of breast cancer cells

    , Article Cellular and Molecular Bioengineering ; Volume 10, Issue 3 , 2017 , Pages 263-272 ; 18655025 (ISSN) Khaleghi, S ; Rahbarizadeh, F ; Ahmadvand, D ; Madaah Hosseini, H. R ; Sharif University of Technology
    Abstract
    The combination of liposomes with magnetic nanoparticles, because of their strong effect on T2 relaxation can open new ways in the innovative cancer therapy and diagnosis. In order to design an intelligent contrast agent in MRI, we chose anti-HER2 nanobody the smallest fully functional antigen-binding fragments evolved from the variable domain, the VHH, of a camel heavy chain-only antibody. These targeted magnetoliposomes bind to the HER2 antigen which is highly expressed on breast and ovarian cancer cells so reducing the side effects as well as increasing image contrast and effectiveness. Cellular iron uptake analysis and in vitro MRI of HER2 positive cells incubated with targeted... 

    Tunable surface plasmon resonance–based remote actuation of bimetallic core-shell nanoparticle-coated Stimuli responsive polymer for switchable chemo-photothermal synergistic cancer therapy

    , Article Journal of Pharmaceutical Sciences ; Volume 107, Issue 10 , 2018 , Pages 2618-2627 ; 00223549 (ISSN) Amoli Diva, M ; Sadighi Bonabi, R ; Pourghazi, K ; Hadilou, N ; Sharif University of Technology
    Abstract
    New dual light/temperature-responsive nanocarriers were synthesized using bimetallic plasmonic Au-Ag and Ag-Au nanoparticles (NPs) as cores of vehicles which subsequently functionalized with an upper critical solubility temperature–based poly acrylamide-co-acrylonitrile using reversible addition-fragmentation chain transfer for spatiotemporally controlled chemo-photothermal synergistic cancer therapy. The bimetallic cores were assigned to sense wavelengths close to the localized surface plasmon resonance of monometallic NP shell to produce heat which not only can increase the surrounding temperature over the upper critical solubility temperature of polymer to open its valves and promote drug... 

    Engineering folate-targeting diselenide-containing triblock copolymer as a redox-responsive shell-sheddable micelle for antitumor therapy in vivo

    , Article Acta Biomaterialia ; Volume 76 , 2018 , Pages 239-256 ; 17427061 (ISSN) Behroozi, F ; Abdkhodaie, M. J ; Sadeghi Abandansari, H ; Satarian, L ; Molazem, M ; Al Jamal, K. T ; Baharvand, H ; Sharif University of Technology
    Acta Materialia Inc  2018
    Abstract
    The oxidation-reduction (redox)–responsive micelle system is based on a diselenide-containing triblock copolymer, poly(ε-caprolactone)-bis(diselenide-methoxy poly(ethylene glycol)/poly(ethylene glycol)-folate) [PCL-(SeSe-mPEG/PEG-FA)2]. This has helped in the development of tumor-targeted delivery for hydrophobic anticancer drugs. The diselenide bond, as a redox-sensitive linkage, was designed in such a manner that it is located at the hydrophilic–hydrophobic hinge to allow complete collapse of the micelle and thus efficient drug release in redox environments. The amphiphilic block copolymers self-assembled into micelles at concentrations higher than the critical micelle concentration (CMC)... 

    Oncolytic paramyxoviruses-induced autophagy; A prudent weapon for cancer therapy

    , Article Journal of Biomedical Science ; Volume 26, Issue 1 , 2019 ; 10217770 (ISSN) Keshavarz, M ; Solaymani Mohammadi, F ; Miri, S. M ; Ghaemi, A ; Sharif University of Technology
    BioMed Central Ltd  2019
    Abstract
    Oncolytic virotherapy has currently emerged as a promising approach upon which scientists have been able to induce tumor-specific cell death in a broad spectrum of malignancies. Paramyxoviruses represent intrinsic oncolytic capability, which makes them excellent candidates to be widely used in oncolytic virotherapy. The mechanisms through which these viruses destroy the cancerous cells involve triggering the autophagic machinery and apoptosis in target cells. Interestingly, oncolytic paramyxoviruses have been found to induce autophagy and lead to tumor cells death rather than their survival. Indeed, the induction of autophagy has been revealed to enhance the immunogenicity of tumor cells via... 

    An integrated analysis to predict micro-RNAs targeting both stemness and metastasis in breast cancer stem cells

    , Article Journal of Cellular and Molecular Medicine ; Volume 23, Issue 4 , 2019 , Pages 2442-2456 ; 15821838 (ISSN) Rahimi, M ; Sharifi Zarchi, A ; Firouzi, J ; Azimi, M ; Zarghami, N ; Alizadeh, E ; Ebrahimi, M ; Sharif University of Technology
    Blackwell Publishing Inc  2019
    Abstract
    Several evidences support the idea that a small population of tumour cells representing self-renewal potential are involved in initiation, maintenance, metastasis, and outcomes of cancer therapy. Elucidation of microRNAs/genes regulatory networks activated in cancer stem cells (CSCs) is necessary for the identification of new targets for cancer therapy. The aim of the present study was to predict the miRNAs pattern, which can target both metastasis and self-renewal pathways using integration of literature and data mining. For this purpose, mammospheres derived from MCF-7, MDA-MB231, and MDA-MB468 were used as breast CSCs model. They had higher migration, invasion, and colony formation... 

    AntAngioCOOL: computational detection of anti-angiogenic peptides

    , Article Journal of Translational Medicine ; Volume 17, Issue 1 , 2019 ; 14795876 (ISSN) Zahiri, J ; Khorsand, B ; Yousefi, A. A ; Kargar, M. J ; Shirali Hossein Zade, R ; Mahdevar, G ; Sharif University of Technology
    BioMed Central Ltd  2019
    Abstract
    Background: Angiogenesis inhibition research is a cutting edge area in angiogenesis-dependent disease therapy, especially in cancer therapy. Recently, studies on anti-angiogenic peptides have provided promising results in the field of cancer treatment. Methods: A non-redundant dataset of 135 anti-angiogenic peptides (positive instances) and 135 non anti-angiogenic peptides (negative instances) was used in this study. Also, 20% of each class were selected to construct an independent test dataset (see Additional files 1, 2). We proposed an effective machine learning based R package (AntAngioCOOL) to predict anti-angiogenic peptides. We have examined more than 200 different classifiers to build... 

    Doxorubicin/cisplatin-loaded superparamagnetic nanoparticles as a stimuli-responsive Co-delivery system for chemo-photothermal therapy

    , Article International Journal of Nanomedicine ; Volume 14 , 2019 , Pages 8769-8786 ; 11769114 (ISSN) Khafaji, M ; Zamani, M ; Vossoughi, M ; Iraji zad, A ; Sharif University of Technology
    Dove Medical Press Ltd  2019
    Abstract
    Introduction: To date, numerous iron-based nanostructures have been designed for cancer therapy applications. Although some of them were promising for clinical applications, few efforts have been made to maximize the therapeutic index of these carriers. Herein, PEGylated silica-coated iron oxide nanoparticles (PS-IONs) were introduced as multipurpose stimuli-responsive co-delivery nanocarriers for a combination of dual-drug chemotherapy and photothermal therapy. Methods: Superparamagnetic iron oxide nanoparticles were synthesized via the sonochemical method and coated by a thin layer of silica. The nanostructures were then further modified with a layer of di-carboxylate polyethylene glycol... 

    Doxorubicin/cisplatin-loaded superparamagnetic nanoparticles as a stimuli-responsive Co-delivery system for chemo-photothermal therapy

    , Article International Journal of Nanomedicine ; Volume 14 , 2019 , Pages 8769-8786 ; 11769114 (ISSN) Khafaji, M ; Zamani, M ; Vossoughi, M ; Iraji zad, A ; Sharif University of Technology
    Dove Medical Press Ltd  2019
    Abstract
    Introduction: To date, numerous iron-based nanostructures have been designed for cancer therapy applications. Although some of them were promising for clinical applications, few efforts have been made to maximize the therapeutic index of these carriers. Herein, PEGylated silica-coated iron oxide nanoparticles (PS-IONs) were introduced as multipurpose stimuli-responsive co-delivery nanocarriers for a combination of dual-drug chemotherapy and photothermal therapy. Methods: Superparamagnetic iron oxide nanoparticles were synthesized via the sonochemical method and coated by a thin layer of silica. The nanostructures were then further modified with a layer of di-carboxylate polyethylene glycol...