Loading...
Search for: carbon-nitride
0.006 seconds
Total 48 records

    Synthesis, Characterization, and Enhanced Optical/Electronic Properties of g-C3N4 Nanosheets for Water Remediation

    , Ph.D. Dissertation Sharif University of Technology Yousefi, Mahdieh (Author) ; Moshfegh, Alireza (Supervisor) ; Asgari, Reza (Supervisor) ; Naseri, Naimeh (Co-Supervisor)
    Abstract
    A global concern has arisen owing to rapid industrial development and population growth, resulting in energy scarcity and earth pollution. In this regard, developing green and sustainable methods for producing clean energy and solving environmental pollution problems have absorbed enormous attention. Among various auspicious strategies, semiconductor photocatalysis has been widely studied in recent years owing to its capabilities to obtain hydrogen as an energy carrier, to remove organic pollutants, and to reduce CO2 emission by converting solar energy into chemical energy. Recently, a metal-free semiconductor photocatalyst based on graphitic carbon nitride, g-C3N4, has received much... 

    Performance Modeling of Nano-Porous Monolayers in Water Desalination Using Molecular Dynamics Simulations Approach

    , Ph.D. Dissertation Sharif University of Technology Mehrdad, Mohammad (Author) ; Moosavi, Ali (Supervisor) ; Nejat, Hossein (Co-Supervisor)
    Abstract
    Water plays an essential role in the daily lives of humans, plants, and animals. Due to the lack of safe water on the planet, in recent years there have been many challenges in the field of water treatment, which has made water desalination technology always one of the most advanced technologies. The most advanced technology in this field is the use of nanotechnology in water and wastewater treatment, especially the use of Membrane processes such as reverse osmosis. Unlike conventional reverse osmosis membranes, nanoporous membranes can ensure rapid water transfer during the displacement process. The purpose of this thesis is to introduce new monolayers that have an incredible performance in... 

    Synthesis and Characterization of the Multifunctional Fe3O4@Mn3O4-LCysteine-g-C3N4 QDs System as a Contrast Agent for Dual-Model Magnetic Resonance and Fluorescence Imaging

    , M.Sc. Thesis Sharif University of Technology Moeini, Ali (Author) ; Madaah Hosseini, Hamid Reza (Supervisor) ; Khachatourian, Adrine Malek (Supervisor)
    Abstract
    Cancer is one of the most important problems that affects public health. If this disease is diagnosed quickly in the patient's body, it can be prevented and treated by determining the stage of the disease and establishing a treatment protocol. Magnetic resonance imaging (MRI) and fluorescence imaging (FI) are among the imaging methods. In order to increase the contrast of images, researchers have turned to the synthesis of materials under contrast agents, which improve diagnostic sensitivity. Synthesis of nanoparticles as multi-mode contrast agents can enhance imaging methods. In this research, the synthesis and characterization of the multifunctional Fe3O4-Mn3O4-LCysteine@g-C3N4 QDs system... 

    Synthesis and Characterization of g-C3N4 Containing Composite Scaffolds for Bifunctional Anti-Cancer/Tissue Engineering Application

    , M.Sc. Thesis Sharif University of Technology Bakhtiari, Alborz (Author) ; Madaah Hosseini, Hamid Reza (Supervisor)
    Abstract
    Today, due to changes in lifestyle and environmental changes, the incidence of cancer is increasing worldwide. With the advancement of science and technology, humans have always sought ways to improve their quality of life and lifespan. The most common cancer related to bone tissue is osteosarcoma. One of the most effective treatment methods is photodynamic therapy. This method requires a photosensitizer with appropriate optical and biological properties. The ideal photosensitizer should be excited with light in the NIR range and produce ROS or active oxygen species. In this research, oxygen-doped graphitic carbon nitride modified by heterojunction with Mn3O4 was used as a photosensitizer.... 

    Synthesis and Photocatalytic Performance Study of Ag/Polydopamine Graphitic Carbon Nitride Nanocomposite

    , M.Sc. Thesis Sharif University of Technology Shahsavandi, Faezeh (Author) ; Madaah Hosseini, Hamid Reza (Supervisor)
    Abstract
    Developing an efficient visible-light-driven photocatalyst is believed to be a practical solution for clean energy and environmental remediation. The present study aimed to broaden current knowledge of the graphitic carbon nitride (g-C3N4)-based plasmonic photocatalysts by decorating polydopamine-grafted g-C3N4 (PDA/g-C3N4) with silver nanoparticles (AgNPs). The ternary nanocomposite was prepared using a facile synthesis method, while XPS and electron microscopy measurements confirmed the homogenous dispersion of AgNPs on PDA/g-C3N4. It was revealed that AgNPs successfully reduced the recombination rate of photoinduced electron-hole charge carriers. The calculated bandgap energy was... 

    Synthesis and Study of Photocatalytic Properties of g-C3N4/TiO2 Nanocomposite

    , M.Sc. Thesis Sharif University of Technology Abtahi, Mohammad (Author) ; Sadrnezhaad, Khatiboleslam (Supervisor)
    Abstract
    In this research, synthesis and characterization of photocatalytic properties of g-C3N4 / TiO2 nanocomposite was carried out. The target of research was to increase the photocatalytic properties of g-C3N4. So at first, g-C3N4 was synthesized from melamine precursor via thermal pyrolysis. Then, TiO2 nanoparticles were synthesized via sol – gel method. g-C3N4 / TiO2 nanocomposite with heterojunction structure was synthesized in one step by thermal pyrolysis of certain amounts of melamine precursor and TiO2 nanoparticles mixture in 550 ℃. Characterization of synthesized samples was carried out by XRD, FT-IR, UV-Vis, PL, BET, DLS and FE-SEM tests. Characterization results showed that g-C3N4,... 

    Photocatalytic Properties of Heat-treated Carbon Nitride to Reduce Cyanide Pollutant from Aqueous Solution

    , M.Sc. Thesis Sharif University of Technology Mahtabpour, Hossein (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    Cyanide ion is one of the materials used in various industries related to metallurgy, the release of which in the environment causes water, air and soil pollution. Numerous researchers have used different methods to remove this pollutant from the environment. Comparing these methods with each other, photocatalytic processes have attracted a lot of attention due to the use of sunlight as a sustainable energy source, good efficiency, low cost, etc. Therefore, in the present study, first the heat-treated graphite carbon-nitride photocatalyst was synthesized and then characterized by X-ray diffraction (XRD) tests, infrared spectroscopy (FT-IR), scattered reflectance spectroscopy (DRS),... 

    Copper Oxide/g-C3N4 Nanocomposites: Synthesis and Optical and Photocatalytic Properties Investigation

    , M.Sc. Thesis Sharif University of Technology Hosseini Hosseinabad, Morteza (Author) ; Sadrnezhaad, Khatiboleslam (Supervisor)
    Abstract
    Herein, cupric oxide (CuO)/graphitic carbon nitride (g-C3N4) is synthesized under microwave irradiation for enhanced photoelectrochemical (PEC) performance and photostability. A facile, one-pot method was utilized to directly deposit the nanocomposite onto FTO from a solution containing copper precursor and urea. Possible mechanisms of CuO/g-C3N4 formation and PEC performance improvement were examined via XRD, FTIR, FESEM, XPS, UV-Vis, and PL. Controlled amounts of urea determined the morphological evolution of CuO and the formation of a protective carbon layer, while its excess quantity converted to g-C3N4 in the presence of CuO. Through heat treatment of the nanocomposite, carbon-doped... 

    Synthesis of the Graphitic Carbon Nitride/Iron Oxide Nanocomposite

    , M.Sc. Thesis Sharif University of Technology Ghane, Navid (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    The g-C3N4/Fe2O3 nanocomposite was produced by the combustion synthesis. The product was characterized by x-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller study (BET), Ultraviolet-visible analysis (UV-vis) and photoluminescence measurement (PL). Effect of iron nitrate on stability and photocurrent density under simulated visible-light irradiation was determined. The highest photocurrent density obtained (4.25 μA/Cm2) was twelve times the pure g-C3N4. This improvement was due to a bandgap decrease, the specific surface area increase, reduction of the electron-hole recombination, and... 

    Kinetics of Adsorption of DBT Sulfur Containing Compound of Gasoline via Nanostructured Adsorbent

    , M.Sc. Thesis Sharif University of Technology Montazeri, Mohammad (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    Based on the new standards, less than 10 ppm sulfur is allowed for the automotive fuels. This has led researchers to try improving the present conventional methods as well as seeking alternative routes for refinement of the petroleum products so much to comply with the requirements. Since thiophenic fragments such as dibenzothiophene (DBT) are the most durable sulfur compounds in the current hydrodisulfurization method, many studies have been conducted over recent years on how to remove these compounds. In this thesis, the desulfurization of dibenzothiophene from gasoline via adsorption method was studied. In order to carry out the adsorption process, a nanocomposite of graphitic-carbon... 

    Microwave Assisted Synthesis of Sno2 Nanoparticles from Sn Coated Cu Wire Scraps

    , M.Sc. Thesis Sharif University of Technology Seza, Ashkan (Author) ; Sadrnezhaad, Kh (Supervisor) ; Mohammadi, MohammadReza (Supervisor)
    Abstract
    Tin Oxide Nanoparticle (SnO2) with the band gap of around 3.6 eV is one of the promising materials in various fields such as photocatalysis water splitting, pollutant removal and also biotechnology. Inorder to use this material in a visible-light rang, some promotions should be conducted.By combining SnO2 nanoparticles with the non-metalic graphitic carbon nitride (g-C3N4), a proper nanocomposite with wide range of application can be obtained. But, in order to industrialize this material, the cost of the final product is an imperative issue to consider.Here we have introduced a novel and low-cost method for synthesis of g-C3N4/SnO2 nanocomposite by using urea as a precursor for g-C3N4 and... 

    Fabrication and Evaluation of Anti-Corrosion Properties of Epoxy/Modified Graphitic Carbon Nitride (g-3N4) Nanocomposite on Mild Steel

    , M.Sc. Thesis Sharif University of Technology Hassanzadeh, Abolfazl (Author) ; Ramazani Saadatabadi, Ahmad (Supervisor)
    Abstract
    In order to protect the corrosion of steel, a self-healing epoxy nanocomposite containing modified graphite carbon nitride (g-C3N4) and ZIF-67 was made along with benzotriazole (BTA) and cerium inhibitors. To increase the efficiency and also to increase the duration of use of inhibitors, it is better to load these inhibitors on containers such as MOFs. One of the useful MOFs for this purpose is ZIF-67, which has a high specific surface area that allows the transport of inhibitors with high capacity. But these containers fail after some time, so to improve the physical properties of the coating systems, g-C3N4 was also used as a mineral material, which of course was also used as a filler.... 

    Photocatalytic Degradation of Organic Pollutants in the Presence of Nanocomposites Based on Graphitic Carbon Nitride under Visible Light Illumination

    , M.Sc. Thesis Sharif University of Technology Hasanvandian, Farzad (Author) ; Hamzehlouyan, Tayebeh (Supervisor) ; Rahman Setayesh, Shahrbanoo (Co-Supervisor)
    Abstract
    The susceptible light-harvesting and tremendous reduction capability along with the potentiality (photo)electrochemical merits of the thiospinels like CuCo2S4 (CCS) bring forth appreciably an advancement in efficacious photocatalytic reactions. However, scant oxidation potential originated from 3p orbitals of sulfur atoms puts a damper on their performance and is even conducive to self-oxidation. In this research, the surfactant/template free of hierarchical CCS thiospinels was synthesized using solvothermal sulfidation of the affordable glycerate-based CuCo-alkoxide and successfully was embedded with Z-scheme V2O5 deposited on wrinkled g-C3N4 lamella (VO-UCN) in the interest of developing... 

    Degradation of Organic Pollutants in Water by Advanced Oxidation Process Using MIL-based Nanostructured Catalyst

    , M.Sc. Thesis Sharif University of Technology Kamandi, Ramtin (Author) ; Kazemini, Mohammad (Supervisor) ; Mahmoodi, Nyaz Mohammad (Supervisor)
    Abstract
    Octahedral crystals of Fe-Metal-organic frameworks like Fe-MIL-101, which is the most stable and active metal-organic frameworks; in combination with graphitic carbon nitride nanosheets could significantly enhance the photocatalytic activity of g-C3N4 for inorganic dye degradation under the irradiation of visible light application. This appropriate cocatalyst modifies the performance of semiconductor via suppressing the recombination of photo-induced carriers and since the synthesized composite prepared by in-situ procedure possesses close contact between each other, the migration of electrons in the photocatalytic reaction will be continued, so the degradation process via the active species... 

    Degradation of Model Textile Dyes in Wastewater using Visible-Light Active Photocatalysts

    , M.Sc. Thesis Sharif University of Technology Heidarpour Chakoli, Hamed (Author) ; Soltanieh, Mohammad (Supervisor) ; Vossoughi, Manouchehr (Co-Supervisor) ; Padervand, Mohsen (Co-Supervisor)
    Abstract
    Textile dyes are a major category of organic pollutants and release of them in the environment causes serious problems. Among the most commonly used methods for colored wastewater, advanced oxidation processes, especially the photocatalytic process, are rapidly developing as a new and effective solution. However, there is still a need for high-level photocatalytic activity and improvement of this process to increase removal efficiency. In this study, we have tried to provide a higher performance for color removal using carbon nitride photocatalyst. Accordingly, two approaches have been proposed to improve the removal of rhodamine b, as one of the common dyes in the textile industries. The... 

    Nanocarbon-based Nanocatalyst Design & Synthesis for Hydrogen Sulfide Removal from Gas Feed

    , M.Sc. Thesis Sharif University of Technology Kamali, Farnoush (Author) ; Baghalha, Morteza (Supervisor) ; Eskandari, Mohammad Mehdi (Supervisor)
    Abstract
    well known metal-free nanostructure carbon-based catalyst, mesoporous graphitic carbon nitride, with diverse morphologies were synthesized by using ethylendiamine/carbontetrachloride as a precursor, SBA-15 and SBA-15 nanorod as hard templates. We have investigated morphology effect on the catalytic performance. The catalysts were characterized by means of low angle and wide angle XRD, BET, FT-IR, CHNOS, FE-SEM analysis. Because of high surface area, pore volume and high nitrogen content, which acts as lewis basic site, for the first time, carbon nitride is chosen for selective catalytic oxidation of hydrogen sulfide to sulfure. Reaction was taken place in a fixed-bed reactor and at... 

    Synthesis and Investigation of Antibacterial Activity of Nanostructures Carbon Nitride g-C3N4 Photocatalyst under Visible Light

    , M.Sc. Thesis Sharif University of Technology Ahmadi, Marzie (Author) ; RoustaAzad, Reza (Supervisor) ; Vosoughi, Manouchehr (Supervisor) ; Padervand, Mohsen (Supervisor)
    Abstract
    Carbon nitride is a compound that has the proper energy gap (2.7 eV) for activities in the visible light. In this research, photocatalysts based on nanoporous Carbon nitride sheets was synthesized with three primary ingredient (urea, melamine and melamine hydrochloride) by pyrolysis method. Ag, Cu, Fe2O3 and Fe3O4 were added to the system to prevent the electron-hole recombination as well as increscent the photocatalytic activity. The chemical bonding state properties and microstructure of the synthesized photocatalysts were investigated by means of XRD, SEM, BET, FTIR, DRS and PL methods. In the first step of the research, the activity of prepared compounds was analyzed by visible light for... 

    The Morphological Effects of Surface Modified Mos2 Nanosheets and Mos2 Qd/G-C3n4 Heterostructure Prepared by Chemical Methods in Hydrogen Evolution Reaction (Her)

    , Ph.D. Dissertation Sharif University of Technology Shaker, Tayebeh (Author) ; Moshfegh, Alireza (Supervisor) ; Naseri, Naeimeh (Co-Supervisor)
    Abstract
    The sustainable development in societies and the global energy challenge requires usage of clean energy systems that have attracted the attention of many researchers in recent decades. One of the major challenges in generating renewable resources is the problem of energy storage and imbalance between supply and demand cycles. Hydrogen as one of the clean energy carriers and due to having the highest energy density in terms of weight, is one of the important research topics. From this point of view, the preparation of electrocatalysts for hydrogen production, based on available materials, via simple and environmentally friendly production methods, was considered in this research.... 

    Synthesis, Characterization and Photocatalytic Application of ZnO/g- C3N4 Composite Nanorods Fabricated by Combined Sol Gel-Hydrothermal Methods

    , M.Sc. Thesis Sharif University of Technology Soltani, Mojtaba (Author) ; Moshfegh, Alireza (Supervisor)
    Abstract
    Because of the working conditions of semiconductors at ambient temperature and pressure, degradation of organic pollutants through semiconductors photocatalysis has attracted the interest of many researchers. Because of its large exciton binding energy,high chemical and physical stability,high electron and hole mobility, and low cost; zinc oxide, an n-type semiconductor with 3.2 eV direct band gap, is widely used in applications such as photocatalysts, solar cells, and light-emitting diodes. Among various morphologies of ZnO, 1D nanostructures such as nanowires and nanorods have recieved much attention due to their high surface to volume ratio. However, the application of ZnO as a... 

    Theoritical Investigation of Metallic Cations and Gas Adsorption on Surface of Carbon Nanostructures

    , Ph.D. Dissertation Sharif University of Technology Safdari, Fatemeh (Author) ; Tafazoli, Mohsen (Supervisor) ; Shamkhali, Amir Nasser (Supervisor)
    Abstract
    Carbon nanostructures are of great importance in scientific and industrial research. Two case of the important two-dimensional carbon nanostructures are graphitic carbon nitride (g-C3N4) and graphene. In the first part of this work, adsorption of important heavy metal cations including Hg+2, Ag+, Cr+3, Pb+2, Cu+2, Ni+2, Cd+2, Tl+, Sb+3, Zn+2 and As+3 on the surface of (g-C3N4) was investigated by density functional theory (DFT). The main purpose of this theoretical study is to evaluate the ability of g-C3N4 to adsorb pollutant cations. The most prominent result of this work was the ability of g-C3N4 for effective adsorption of As+3 and Sb+3 ions from aqeous solutions. Also, another...