Loading...
Search for: cardiomyocytes
0.005 seconds

    Designing an Intelligent System to Analyze Electrograms of Induced Pluripotent Stem Cell-Derived Cardiomyocytes

    , M.Sc. Thesis Sharif University of Technology Golgooni, Zeinab (Author) ; Rabiee, Hamid Reza (Supervisor) ; Soleymani, Mahdieh (Supervisor) ; Pahlavan, Sara (Co-Advisor)
    Abstract
    Ability to differentiate induced pluripotent stem cells to cardiomycocytes has attracted attentions,considering crucial role of the heart in the human body and great potential applications of these cells like disease modeling, new treatment methods and basic research. We are able to analyze the performance of beating cells through recording extracellular field potentials of cardiomyocytes using multi-electrode array (MEA) technology. This analysis is an essential step to use cardiac cells in any future development and experiment. Currently, the electrophysiology experts analyze recorded extracellular field potentials of induced cardiomyocytes by observing all the episodes of each record.... 

    Study and Fabrication of a Microfluidic System to Investigate Stem Cell Differentiation

    , M.Sc. Thesis Sharif University of Technology Motmaen Esfahani, Shayan (Author) ; Vosoughi, Manouchehr (Supervisor) ; Alemzadeh, Iran (Supervisor)
    Abstract
    In recent years, many studies have conducted research about stem cells due to their prominent features such as proliferation and differentiation. By changing the specific parameters of the cellular micro-environment, it is possible to determine the stem cells fate and thereby use them in medical affairs. For this purpose, various devices and methods have been designeds such as microfluidic devices and scaffolds. The microfluidic devices has been especially focuced in the researchs due to their unique features, like the possibility of testing with small amounts of samples, the creation and control of low cost cellular micro-environment and low practical time. Two-dimensional scaffolds made up... 

    Simulation of the effects of oxygen carriers and scaffold geometry on oxygen distribution and cell growth in a channeled scaffold for engineering myocardium

    , Article Mathematical Biosciences ; Volume 294 , 2017 , Pages 160-171 ; 00255564 (ISSN) Zehi Mofrad, A ; Mashayekhan, S ; Bastani, D ; Sharif University of Technology
    Abstract
    This study proposes a mathematical model to evaluate the impact of oxygen carriers and scaffold geometry on oxygen distribution and cell growth in a 3D cardiac construct using computational fluid dynamics (CFD). Flow equations, oxygen balance equation and cell balance equation were solved using special initial and boundary conditions. The modeling results revealed that 55% increase in cardiac cell density occurred by using 6.4% perfluorocarbon oxygen carrier (PFC) compared to pure culture medium without PFC supplementation. Moreover, the effects of the scaffold geometry on cell density were examined by changing the channel numbers and the construct length. A 30% increase in the average cells... 

    Engineering of mature human induced pluripotent stem cell-derived cardiomyocytes using substrates with multiscale topography

    , Article Advanced Functional Materials ; Volume 28, Issue 19 , 2018 ; 1616301X (ISSN) Pour Shahid Saeed Abadi, P ; Garbern, J. C ; Behzadi, S ; Hill, M. J ; Tresback, J. S ; Heydari, T ; Ejtehadi, M. R ; Ahmed, N ; Copley, E ; Aghaverdi, H ; Lee, R. T ; Farokhzad, O. C ; Mahmoudi, M ; Sharif University of Technology
    Wiley-VCH Verlag  2018
    Abstract
    Producing mature and functional cardiomyocytes (CMs) by in vitro differentiation of induced pluripotent stem cells (iPSCs) using only biochemical cues is challenging. To mimic the biophysical and biomechanical complexity of the native in vivo environment during the differentiation and maturation process, polydimethylsiloxane substrates with 3D topography at the micrometer and sub-micrometer levels are developed and used as cell-culture substrates. The results show that while cylindrical patterns on the substrates resembling mature CMs enhance the maturation of iPSC-derived CMs, sub-micrometer-level topographical features derived by imprinting primary human CMs further accelerate both the... 

    3D Bioprinting of oxygenated cell-laden gelatin methacryloyl constructs

    , Article Advanced Healthcare Materials ; Volume 9, Issue 15 , 2020 Erdem, A ; Darabi, M. A ; Nasiri, R ; Sangabathuni, S ; Ertas, Y. N ; Alem, H ; Hosseini, V ; Shamloo, A ; Nasr, A. S ; Ahadian, S ; Dokmeci, M. R ; Khademhosseini, A ; Ashammakhi, N ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Cell survival during the early stages of transplantation and before new blood vessels formation is a major challenge in translational applications of 3D bioprinted tissues. Supplementing oxygen (O2) to transplanted cells via an O2 generating source such as calcium peroxide (CPO) is an attractive approach to ensure cell viability. Calcium peroxide also produces calcium hydroxide that reduces the viscosity of bioinks, which is a limiting factor for bioprinting. Therefore, adapting this solution into 3D bioprinting is of significant importance. In this study, a gelatin methacryloyl (GelMA) bioink that is optimized in terms of pH and viscosity is developed. The improved rheological properties... 

    The role of hippo signaling pathway in physiological cardiac hypertrophy

    , Article BioImpacts ; Volume 10, Issue 4 , 2020 , Pages 251-257 Gholipour, M ; Tabrizi, A ; Sharif University of Technology
    Tabriz University of Medical Sciences  2020
    Abstract
    Introduction: The role of Hippo signaling pathway, which was identified by genetic studies as a key regulator for tissue growth and organ size, in promoting physiological cardiac hypertrophy has not been investigated. Methods: Fourteen male Wistar rats were randomly assigned to the exercise and control groups. The exercise group ran 1 hour per day, 5 days/week, at about 65%-75% VO2max on the motor-driven treadmill with 15ºslope, and the control group ran 15 min/d, 2 days/ week at 9 m/min (0ºinclination), throughout the eight-week experimental period. Forty-eight hours after the last session, hearts were dissected and left ventricles were weighed and stored for subsequent RT-PCR analysis....