Loading...
Search for: catalytic-activities
0.006 seconds
Total 38 records

    Electrodeposition and electrocatalytic properties of Pt/Ni-Co nanowires for non-enzymatic glucose detection

    , Article Journal of Alloys and Compounds ; Volume 554 , 2013 , Pages 169-176 ; 09258388 (ISSN) Mahshid, S. S ; Mahshid, S ; Dolati, A ; Ghorbani, M ; Yang, L ; Luo, S ; Cai, Q ; Sharif University of Technology
    2013
    Abstract
    A nanowire arrays system consisting of an ordered configuration of Pt, Ni and Co was constructed in single-bath solution through pulse electrodeposition. This structure was evaluated as a potential amperometric non-enzymatic sensor to detect glucose in alkaline solution. We observed a strong and fast amperometric response at low applied potential of 0.4 V vs. SCE over linear ranges of 0-0.2 mM and 0.2-8 mM glucose with sensitivities of 1125 and 333 μA mM-1 cm-2, respectively. We also observed a low detection limit for glucose of 1 μM. Correlation of the electronic and geometric modifications with the electrochemical performance characteristics enhanced catalytic activity of the electrode by... 

    A simple granulation technique for preparing high-porosity nano copper oxide(II) catalyst beads

    , Article Particuology ; Volume 9, Issue 5 , 2011 , Pages 480-485 ; 16742001 (ISSN) Ahmadi, S. J ; Outokesh, M ; Hosseinpour, M ; Mousavand, T ; Sharif University of Technology
    Abstract
    A simple and efficient method was developed for fabricating spherical granules of CuO catalyst via a three-step procedure. In the first step, copper oxide nanoparticles were synthesized by hydrothermal decomposition of copper nitrate solution under supercritical condition. Then, they were immobilized in the polymeric matrix of calcium alginate, and followed by high-temperature calcination in an air stream as the third step, in which carbonaceous materials were oxidized, to result in a pebble-type catalyst of high porosity. The produced CuO nanoparticles were characterized by transmission electron microscopy (TEM) that revealed an average size of 5 nm, X-ray diffractometry (XRD), and thermo... 

    Application of pyrolytic graphite modified with nano-diamond/graphite film for simultaneous voltammetric determination of epinephrine and uric acid in the presence of ascorbic acid

    , Article Electrochimica Acta ; Volume 55, Issue 28 , 2010 , Pages 9090-9096 ; 00134686 (ISSN) Shahrokhian, S ; Khafaji, M ; Sharif University of Technology
    2010
    Abstract
    A novel modified pyrolytic graphite electrode with nano-diamond/graphite was fabricated. The electrochemical response characteristics of the modified electrode toward the epinephrine (EN) and uric acid (UA) were studied by means of cyclic and linear sweep voltammetry. The structural morphology and thickness of the film was characterized by SEM technique. The prepared electrode showed an excellent catalytic activity in the electrochemical oxidation of EN and UA, leading to remarkable enhancements in the corresponding peak currents and lowering the peak potentials. The prepared modified electrode acts as a highly sensitive sensor for simultaneous determination of EN and UA in the presence of... 

    A preliminary study of the electro-catalytic reduction of oxygen on Cu-Pd alloys in alkaline solution

    , Article Journal of Electroanalytical Chemistry ; Volume 647, Issue 1 , 2010 , Pages 66-73 ; 15726657 (ISSN) Gobal, F ; Arab, R ; Sharif University of Technology
    2010
    Abstract
    Copper-palladium alloys of different compositions are electrodeposited on nickel from aqueous solutions. These alloys are characterized by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The catalytic activity of these alloys toward oxygen reduction reaction (ORR) in alkaline solution is investigated using rotating disk electrode (RDE). The number of electrons transferred per O2 molecule (n) obtained at different potentials is close to 2 at low overpotential indicating HO2- formation and gradually increases to 4 at higher overpotentials indicating full reduction to OH-. It is shown that Cu-Pd alloys are better electrocatalysts than Pd with Pd-Cu-1 having 24.5%... 

    The effect of temperature on the TCVD growth of CNTs from LPG over Pd nanoparticles prepared by laser ablation

    , Article Physica B: Condensed Matter ; Volume 405, Issue 16 , 2010 , Pages 3468-3474 ; 09214526 (ISSN) Pasha, M. A ; Poursalehi, R ; Vesaghi, M. A ; Shafiekhani, A ; Sharif University of Technology
    2010
    Abstract
    TCVD growth of multiwalled carbon nanotubes (MWCNTs) was reported by catalytic decomposition of liquefied petroleum gas (LPG) at a temperature range of 580800 °C. Laser ablation was employed as a simple and rapid technique to produce Pd nanoparticles which possess effective catalytic activities for CNT synthesis. UVvisible spectroscopy and TEM images confirmed that the Pd nanoparticles are stable for a long time and have rather spherical shape with average size of 7 nm. SEM and TEM observations and Raman spectroscopy demonstrated that the CNTs have a wavy structure, dense morphology and acceptable crystallinity. Since Pd nanoparticles are inactivated or agglomerated at extremes of the... 

    Encapsulation of palladium nanoparticles by multiwall carbon nanotubes-graft-poly(citric acid) hybrid materials

    , Article Journal of Applied Polymer Science ; Volume 116, Issue 4 , 2010 , Pages 2188-2196 ; 00218995 (ISSN) Adeli, M ; Mehdipour, E ; Bavadi, M ; Sharif University of Technology
    2010
    Abstract
    Citric acid was polymerized onto the surface of functionalized multiwall carbon nanotubes (MWCNTCOOH) and MWCNT-graft-poly(citric acid) (MWCNTg-PCA) hybrid materials were obtained. Due to the grafted poly(citric acid) branches, MWCNT-g-PCA hybrid materials not only were soluble in water but also were able to trap water soluble metal ions. Reduction of trapped metal ions in the polymeric shell of MWCNT-g-PCA hybrid materials by reducing agents such as sodium borohydride led to encapsulated metal nanoparticles on the surface of MWCNT. Herein palladium nanoparticles were encapsulated and transported by MWCNT-g-PCA hybrid materials (MWCNT-g-PCA-EPN) and their application as nanocatalyst toward... 

    Application of carbon nanoparticle/chitosan modified electrode for the square-wave adsorptive anodic striping voltammetric determination of Niclosamide

    , Article Electrochemistry Communications ; Volume 12, Issue 1 , 2010 , Pages 66-69 ; 13882481 (ISSN) Ghalkhani, M ; Shahrokhian, S ; Sharif University of Technology
    2010
    Abstract
    A new modified electrode formed by carbon nanoparticle/chitosan film (CNP/CS) was used for electrocatalytic reduction of Niclosamide (NA). The electrochemical behavior of NA at the CNP/CS modified electrode was investigated in detail by the means of cyclic voltammetry. The reduction mechanism of NA, corresponds to the redox chemistry of nitro group, was thoroughly investigated. The effect of the experimental parameters e.g. potential and time of accumulation, pH of the buffered solutions and potential sweep rate on the response of the electrode was studied. The prepared electrode showed high stability and uniformity in the composite film, short response time, good reproducibility and an... 

    Synthesis and crystal structures of a series of (μ-thiophenolato)(μ-pyrazolato-N,N′) double bridged dipalladium(II) complexes and their application in Mizoroki-Heck reaction as highly efficient catalysts

    , Article Inorganica Chimica Acta ; Volume 440 , 2016 , Pages 107-117 ; 00201693 (ISSN) Khadir, N ; Tavakoli, G ; Assoud, A ; Bagherzadeh, M ; Boghaei, D. M ; Sharif University of Technology
    Elsevier S. A 
    Abstract
    Three new binucleating S-protected ligand precursors, 2-(N,N-dimethylthiocarbamato)-5-methylisophthalaldehyde di-2′-hydroxy 5′-methylanil (1b), 2-(N,N-dimethylthiocarbamato)-5-tert-butylisophthalaldehyde di-2′-hydroxyanil (2a) and 2-(N,N-dimethylthiocarbamato)-5-tert-butylisophthalaldehyde di-2′-hydroxy 5′-methylanil (2b), have been synthesized. The reaction of these ligand precursors with PdCl2 in the presence of pyrazole under Pd-mediated S-C cleavage yielded a series of binuclear palladium(II) complexes of general formula [LPd2(pz)], where pz is the exogenous bridging pyrazolyl ligand and L3- represents a series of pentadentate thiophenol-based bridging ligands originated from their... 

    Synthesis and Characterization of Bis[2-(2׳-Hydroxyphenyl)- -oxazolinato]Ni(II) Complex and Investigation of it׳s Catalytic Activity in C-C Coupling Heck Reaction

    , M.Sc. Thesis Sharif University of Technology Arab, Zeynab (Author) ; Bagherzadeh, Mojtaba (Supervisor)
    Abstract
    In this study a new Ni(II)-¬oxazoline complex was synthesized by reaction of Ni(CH3COO)2.4H2O and 2-(2׳-hydroxyphenyl)-2-oxazoline ligand in MeOH solvent. The resulting complex bis[2-(2׳-hydroxyphenyl)-2-oxazolinato]Ni(II), was characterized by different spectroscopic methods. X-ray diffraction showed that this complex is four coordinated with a square planner geometry. The complex was applied as an efficient homogeneous catalyst in C-C coupling Heck reaction of arylhalides with olefins such as methylacrylate. Investigation of the catalytic activity of the complex in Heck reaction between arylhalides and olefins showed high yield and selectivity. For example reaction between iodobenzene and... 

    Thesis Title Synthesis and Characterization of Metal Nano Oxids and Investigation of their Catalytic Activity

    , M.Sc. Thesis Sharif University of Technology Falamarzi Askarani, Mehrdad (Author) ; Gholami, Mohammad Reza (Supervisor)
    Abstract
    In this project, the catalytic properties of CuO and ZnO were investigated in reduction reactions.MOFs were used as a precursor to preparation of these metal oxides. Gold and silver nanoparticles were used to improve the catalytic properties of the prepared metal oxides. Structural characteristics of nanocatalysts were stydied by SEM, TEM, XRD and FT-IR techniques. The prepared nanocomposites were applied in the catalytic reduction of paranitrophenol in the presence of sodium borohydride and the kinetics and mechanism were investigated according to the structure of the prepared catalysts  

    Mechanochemical green synthesis of exfoliated edge-functionalized boron nitride quantum dots: application to vitamin c sensing through hybridization with gold electrodes

    , Article ACS Applied Materials and Interfaces ; Volume 10, Issue 34 , 2018 , Pages 28819-28827 ; 19448244 (ISSN) Angizi, S ; Hatamie, A ; Ghanbari, H ; Simchi, A ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    Two-dimensional boron nitride quantum dots (2D BNQDs) with excellent chemical stability, high photoluminescence efficiency, and low toxicity are a new class of advanced materials for biosensing and bioimaging applications. To overcome the current challenge about the lack of facile, scalable, and reproducible synthesis approach of BNQDs, we introduce a green and facile approach based on mechanochemical exfoliation of bulk h-BN particles in ethanol. Few-layered hydroxylated-functionalized QDs with a thickness of 1-2 nm and a lateral dimension of 2-6 nm have been prepared. The synthesized nanocrystals exhibit a strong fluorescence emission at 407 and 425 nm with a quantum efficiency of ∼6.2%.... 

    Nanoparticle catalysts

    , Article Journal of Physics D: Applied Physics ; Volume 42, Issue 23 , 2009 ; 00223727 (ISSN) Zaker Moshfegh, A. R ; Sharif University of Technology
    2009
    Abstract
    In this review, the importance of nanoparticles (NPs), with emphasis on their general and specific properties, especially the high surface-to-volume ratio (A/V), in many technological and industrial applications is studied. Some physical and chemical preparation methods for growing several metallic and binary alloy NP catalysts are reviewed. The growth and mechanism of catalytic reactions for synthesis of 1D nanostructures such as ZnO nanowires and multiwall carbon nanotubes (MWCNTs) are discussed. Gas-phase production with emphasis on dependence of catalytic activity and selectivity on size, shape and structure of NPs is also investigated. Application of NP catalysts in several... 

    Application of carbon-paste electrode modified with iron phthalocyanine for voltammetric determination of epinephrine in the presence of ascorbic acid and uric acid

    , Article Sensors and Actuators, B: Chemical ; Volume 137, Issue 2 , 2009 , Pages 669-675 ; 09254005 (ISSN) Shahrokhian, S ; Ghalkhani, M ; Amini, M. K ; Sharif University of Technology
    2009
    Abstract
    A carbon-paste electrode (CPE) modified with iron(II) phthalocyanine was used for the sensitive voltammetric determination of epinephrine (EN). The electrochemical response characteristics of the modified electrode toward EN, ascorbic acid (AA) and uric acid (UA) were investigated by cyclic and differential pulse voltammetry (CV and DPV). The results show an efficient catalytic activity of the electrode for the electro-oxidation of EN, which leads to improvement of reversibility of the electrode response and lowering its overpotential by more than 100 mV. The effect of pH and potential sweep rate on the mechanism of the electrode process was investigated. The modified electrode exhibits an... 

    Kinetics investigation of the photocatalytic degradation of acid blue 92 in aqueous solution using nanocrystalline TiO2 prepared in an ionic liquid

    , Article Progress in Reaction Kinetics and Mechanism ; Volume 34, Issue 1 , 2009 , Pages 55-76 ; 14686783 (ISSN) Ghasemi, S ; Rahimnejad, S ; Rahman Setayesh, S ; Hosseini, M ; Gholami, M. R ; Sharif University of Technology
    2009
    Abstract
    TiO2 nanoparticles were prepared by the sol - gel process using 2-hydroxylethy- lammonium formate as an ionic liquid. Nanoparticles were crystallized at various temperatures (300-700°C). The products were characterized using X-ray diffraction (XRD), nitrogen adsorption - desorption isotherms and scanning electron microscopy (SEM) techniques. It was found that the resulting TiO2 nanoparticles had good thermal stability either to resist collapse or the anatase-to-rutile phase transformation during heat treatment. The photocatalytic activity of the nanocrystalline TiO2 was evaluated by the degradation of Acid Blue 92 (AB92) which is commonly used as a textile dye. The results showed that the... 

    Preparation of Metal Nanoparticles/Ionic Liquid Composites and Investigation of Their Catalytic Activity

    , M.Sc. Thesis Sharif University of Technology Gharegozloo, Nazanin (Author) ; Gholami, Mohammad Reza (Supervisor) ; Salari, Hadi (Co-Advisor)
    Abstract
    In this research Fe3O4 magnetic nanoparticles were prepared. To protect against oxidation, a shell of SiO2 was deposited on Fe3O4. Graphene oxide was prepared by the modified Hummer method and supported on the Fe3O4@SiO2 core-shell. Then, ionic liquid layer was impregnated on it. Afterward, PtAu nano alloy were synthesized on the surface of nanocomposite with the different molar ration including 100:0, 75:25, 50:50, 25:75 and 0:100. The as-prepared nanocomposite was characterized by SEM, XRD, and FT-IR analytical methods.For investigation of kinetically activity of catalysts, reduction of 4-nitrophenol with NaBH4 as reducer was used. The adsorption in different times was obtained by UV-vis... 

    Design and Synthesis of Heterogeneous Nanocatalysts Based on Immobilized Metals on Polymeric Substrates and their Applications in Organic Reactions

    , Ph.D. Dissertation Sharif University of Technology Motamedi, Anahita (Author) ; Pourjavadi, Ali (Supervisor)
    Abstract
    Today, catalysts have shown the growing applications in chemical industries especially for drug synthesis. Using immobilized heterogeneous catalysts is a sensible way to benefit from advantages of both heterogeneous and homogeneous catalysts. In this regards, homogeneous catalysts are immobilized on to a solid support through various methods. However, low loading amount of homogenous part and subsequently insufficient catalytic activity are main limitations of immobilized heterogeneous catalysts. For this reason, polymeric supports have been introduced to immobilize metal ions or nanoparticles. These polymeric supports not only possess advantages such as anti-corrosive properties, simple... 

    Silver nanoparticles modified carbon nanotube paste electrode for simultaneous determination of dopamine and ascorbic acid

    , Article Journal of Electroanalytical Chemistry ; Volume 633, Issue 1 , 2009 , Pages 85-91 ; 15726657 (ISSN) Tashkhourian, J ; Hormozi Nezhad, M. R ; Khodavesi, J ; Javadi, S ; Sharif University of Technology
    Elsevier  2009
    Abstract
    A novel modified carbon-paste electrode was employed for the simultaneous determination of dopamine (DA) and ascorbic acid (AA) with good selectivity and high sensitivity. Silver nanoparticle and carbon nanotube modified carbon-paste electrode (Ag/CNT-CPE) displayed excellent electrochemical catalytic activities towards dopamine (DA) and ascorbic acid (AA). The oxidation overpotentials of DA and AA were decreased significantly compared with those obtained at the bare CPE. Differential pulse voltammetry was used for the simultaneous determination of DA and AA. The peak separation between DA and AA was 67 mV. The calibration curves for DA and AA were obtained in the range of 8.0 × 10-7-6.4 ×... 

    Multi-walled carbon nanotubes with immobilised cobalt nanoparticle for modification of glassy carbon electrode: Application to sensitive voltammetric determination of thioridazine

    , Article Biosensors and Bioelectronics ; Volume 24, Issue 11 , 2009 , Pages 3235-3241 ; 09565663 (ISSN) Shahrokhian, S ; Ghalkhani, M ; Adeli, M ; Amini, M. K ; Sharif University of Technology
    2009
    Abstract
    Multi-walled carbon nanotubes (MWCNTs) were immobilised with cobalt nanoparticles and analyzed by transmission electron microscopy. This modification procedure substantially improved colloidal dispersion of the immobilised MWCNTs in water and organic solvents, yielding uniform and stable thin films for modification of the glassy carbon electrode surface. The modified electrode showed an efficient catalytic role for the electrochemical oxidation of thioridazine (TR), leading to remarkable decrease in its oxidation overpotential of approximately 100 mV and enhancement of the kinetics of the electrode reaction, which can be confirmed by increasing in the peak current and sharpness of the peak.... 

    Electrochemical study of Azathioprine at thin carbon nanoparticle composite film electrode

    , Article Electrochemistry Communications ; Volume 11, Issue 7 , 2009 , Pages 1425-1428 ; 13882481 (ISSN) Shahrokhian, S ; Ghalkhani, M ; Sharif University of Technology
    2009
    Abstract
    Thin carbon nanoparticle/Nafion film (CNP/N), as a novel electrode material, is formed on the surface of the glassy carbon electrode in a simple solvent evaporation process. The electrochemical behavior of Azathioprine (Aza) at the CNP/N-modified electrode is investigated in detail by the means of cyclic voltammetry. During the electrochemical reduction of Aza, an irreversible cathodic peak is appeared. Cyclic voltammetric studies indicated that the reduction process has an irreversible and adsorption-like behavior. The observed reduction peak is attributed to a four-electron process referring to the reduction of nitro group to the corresponding hydroxylamine. The prepared electrode showed... 

    A new eco-friendly and efficient mesoporous solid acid catalyst for the alkylation of phenols and naphthols under microwave irradiation and solvent-free conditions

    , Article Scientia Iranica ; Volume 16, Issue 2 C , 2009 , Pages 81-88 ; 10263098 (ISSN) Matloubi Moghaddam, F ; Akhlaghi, M ; Hojabri, L ; Dekamin, M. G ; Sharif University of Technology
    2009
    Abstract
    The catalytic activity of a mixture of ZnCl2: AlCl3 supported on silica gel was evaluated for the alkylation of phenols with benzyl alcohol, tret-butyl alcohol and styrene under microwave irradiation and solvent-free conditions. The catalyst preparation method, its characterization and reusability, were reported. The effect of the phenol to benzyl alcohol ratio and the time of reaction on the phenol conversion and distribution of products was investigated. A conversion percentage up to 97% was achieved when hydroquinone was used. A selective ortho- directed alkylation for phenol, α-naphthol and β-naphthol was observed. © Sharif University of Technology, December 2009