Loading...
Search for: cell-adhesion
0.007 seconds
Total 65 records

    Development of injectable hydrogels based on human amniotic membrane and polyethyleneglycol-modified nanosilicates for tissue engineering applications

    , Article European Polymer Journal ; Volume 179 , 2022 ; 00143057 (ISSN) Kafili, G ; Tamjid, E ; Niknejad, H ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Recently, decellularized amniotic membrane-derived hydrogels (DAMHs) have received significant attention for wound care, ocular surface reconstruction, and chondral healing. Despite the advantages of DAMHs for tissue engineering (TE), the loss of structural components during the decellularization process mitigates their mechanical strength and thus limits their practical application. Herein, we present a method for the surface modification of two-dimensional nanosilicates (laponite) as a rheological modifier to tailor the properties of DAMHs. Results show that after introducing nanosilicates, severe aggregation of the nanoparticles occurs, owing to the shielding effect of ions on the surface... 

    An electroconductive, thermosensitive, and injectable chitosan/pluronic/gold-decorated cellulose nanofiber hydrogel as an efficient carrier for regeneration of cardiac tissue

    , Article Materials ; Volume 15, Issue 15 , 2022 ; 19961944 (ISSN) Tohidi, H ; Maleki Jirsaraei, N ; Simchi, A ; Mohandes, F ; Emami, Z ; Fassina, L ; Naro, F ; Conti, B ; Barbagallo, F ; Sharif University of Technology
    MDPI  2022
    Abstract
    Myocardial infarction is a major cause of death worldwide and remains a social and healthcare burden. Injectable hydrogels with the ability to locally deliver drugs or cells to the damaged area can revolutionize the treatment of heart diseases. Herein, we formulate a thermo-responsive and injectable hydrogel based on conjugated chitosan/poloxamers for cardiac repair. To tailor the mechanical properties and electrical signal transmission, gold nanoparticles (AuNPs) with an average diameter of 50 nm were physically bonded to oxidized bacterial nanocellulose fibers (OBC) and added to the thermosensitive hydrogel at the ratio of 1% w/v. The prepared hydrogels have a porous structure with open... 

    Improving mechanical properties and biocompatibility of 3D printed PLA by the addition of PEG and titanium particles, using a novel incorporation method

    , Article Bioprinting ; Volume 27 , 2022 ; 24058866 (ISSN) Asadollahi, M ; Gerashi, E ; Zohrevand, M ; Zarei, M ; Sayedain, S. S ; Alizadeh, R ; Labbaf, S ; Atari, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Polylactic acid (PLA) scaffolds produced by the fused deposition modeling (FDM) method have biocompatibility, close Young's modulus to that of bone, and the ability to make complex shapes. However, PLA has some drawbacks like brittleness, inappropriate mechanical strength and hydrophobicity, and a low degradation rate. In this study, polyethylene glycol (PEG) (5 and 10 wt%) by solving method and titanium (Ti) particles (5 wt%) by two different methods were mixed with PLA to address the mentioned problems. Extruded filaments were investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and fourier transform infrared (FTIR). Surface morphology of the produced filaments... 

    Unraveling cancer metastatic cascade using microfluidics-based technologies

    , Article Biophysical Reviews ; Volume 14, Issue 2 , 2022 , Pages 517-543 ; 18672450 (ISSN) Hakim, M ; Kermanshah, L ; Abouali, H ; Hashemi, H. M ; Yari, A ; Khorasheh, F ; Alemzadeh, I ; Vossoughi, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Cancer has long been a leading cause of death. The primary tumor, however, is not the main cause of death in more than 90% of cases. It is the complex process of metastasis that makes cancer deadly. The invasion metastasis cascade is the multi-step biological process of cancer cell dissemination to distant organ sites and adaptation to the new microenvironment site. Unraveling the metastasis process can provide great insight into cancer death prevention or even treatment. Microfluidics is a promising platform, that provides a wide range of applications in metastasis-related investigations. Cell culture microfluidic technologies for in vitro modeling of cancer tissues with fluid flow and the... 

    Bioinspired TiO2/chitosan/HA coatings on Ti surfaces: Biomedical improvement by intermediate hierarchical films

    , Article Biomedical Materials (Bristol) ; Volume 17, Issue 3 , 2022 ; 17486041 (ISSN) Rahnamaee, S. Y ; Ahmadi Seyedkhani, S ; Eslami Saed, A ; Sadrnezhaad, S. K ; Seza, A ; Sharif University of Technology
    Institute of Physics  2022
    Abstract
    The most common reasons for hard-tissue implant failure are structural loosening and prosthetic infections. Hence, in this study, to overcome the first problem, different bioinspired coatings, including dual acid-etched, anodic TiO2 nanotubes array, anodic hierarchical titanium oxide (HO), micro- and nanostructured hydroxyapatite (HA) layers, and HA/chitosan (HA/CS) nanocomposite, were applied to the titanium alloy surfaces. X-ray diffraction and FTIR analysis demonstrated that the in situ HA/CS nanocomposite formed successfully. The MTT assay showed that all samples had excellent cell viability, with cell proliferation rates ranging from 120% to 150% after 10 days. The HO coating... 

    Fabrication and characterization of biaxially electrospun collagen/alginate nanofibers, improved with Rhodotorula mucilaginosa sp. GUMS16 produced exopolysaccharides for wound healing applications

    , Article International Journal of Biological Macromolecules ; Volume 196 , 2022 , Pages 194-203 ; 01418130 (ISSN) Ashraf, S. S ; Parivar, K ; Hayati Roodbari, N ; Mashayekhan, S ; Amini, N ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Fabrication of scaffolds with enhanced mechanical properties and desirable cellular compatibility is critical for numerous tissue engineering applications. This study was aimed at fabrication and characterization of a nanofiber skin substitute composed of collagen (Col)/sodium alginate (SA)/ polyethylene oxide (PEO)/Rhodotorula mucilaginosa sp. GUMS16 produced exopolysaccharides (EPS) were prepared using the biaxial electrospinning technique. This study used collagen extracted from the bovine tendon as a natural scaffold, sodium alginate as an absorber of excess wound fluids, and GUMS16 produced exopolysaccharides as an antioxidant. Collagen was characterized using FTIR and EDS analyses. The... 

    Injectable hydrogels based on oxidized alginate-gelatin reinforced by carbon nitride quantum dots for tissue engineering

    , Article International Journal of Pharmaceutics ; Volume 602 , 2021 ; 03785173 (ISSN) Ghanbari, M ; Salavati Niasari, M ; Mohandes, F ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Stem cell treatment is promising in the various disorders treatment, but its effect is confined by the adverse conditions in the damaged tissues. The utilization of hydrogels has been suggested as a procedure to defeat this issue by developing the engraftment and survival of injected stem cells. Specifically, injectable hydrogels have drawn much attention due to their shape adaptability, ease of use, and the capability to reach body parts that are hard to access. In this study, the thermosensitive injectable hydrogels based on oxidized alginate, gelatin, and carbon nitride quantum dots (CNQDs) have been fabricated for tissue engineering. The mechanical characteristics of the nanocomposite... 

    Fabrication and characterization of scaffolds containing different amounts of allantoin for skin tissue engineering

    , Article Scientific Reports ; Volume 11, Issue 1 , 2021 ; 20452322 (ISSN) Dorri Nokoorani, Y ; Shamloo, A ; Bahadoran, M ; Moravvej, H ; Sharif University of Technology
    Nature Research  2021
    Abstract
    Using the skin tissue engineering approach is a way to help the body to recover its lost skin in cases that the spontaneous healing process is either impossible or inadequate, such as severe wounds or burns. In the present study, chitosan/gelatin-based scaffolds containing 0.25, 0.5, 0.75, and 1% allantoin were created to improve the wounds’ healing process. EDC and NHS were used to cross-link the samples, which were further freeze-dried. Different in-vitro methods were utilized to characterize the specimens, including SEM imaging, PBS absorption and degradation tests, mechanical experiments, allantoin release profile assessment, antibacterial assay, and cell viability and adhesion tests.... 

    PLGA/TiO2 nanocomposite scaffolds for biomedical applications: Fabrication, photocatalytic, and antibacterial properties

    , Article BioImpacts ; Volume 11, Issue 1 , 2021 , Pages 45-52 ; 22285652 (ISSN) Pelaseyed, S. S ; Madaah Hosseini, H. R ; Nokhbedehghan, Z ; Samadikuchaksaraei, A ; Sharif University of Technology
    Tabriz University of Medical Sciences  2021
    Abstract
    Introduction: Porous 3D scaffolds synthesized using biocompatible and biodegradable materials could provide suitable microenvironment and mechanical support for optimal cell growth and function. The effect of the scaffold porosity on the mechanical properties, as well as the TiO2 nanoparticles addition on the bioactivity, antimicrobial, photocatalytic, and cytotoxicity properties of scaffolds were investigated. Methods: In the present study, porous scaffolds consisting poly (lactide-co-glycolide) (PLGA) containing TiO2 nanoparticles were fabricated via air-liquid foaming technique, which is a novel method and has more advantages due to not using additives for nucleation compared to former... 

    Emerging phospholipid nanobiomaterials for biomedical applications to lab-on-a-chip, drug delivery, and cellular engineering

    , Article ACS Applied Bio Materials ; 2021 ; 25766422 (ISSN) Rahimnejad, M ; Rabiee, N ; Ahmadi, S ; Jahangiri, S ; Sajadi, S. M ; Akhavan, O ; Saeb, M. R ; Kwon, W ; Kim, M ; Hahn, S. K ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    The design of advanced nanobiomaterials to improve analytical accuracy and therapeutic efficacy has become an important prerequisite for the development of innovative nanomedicines. Recently, phospholipid nanobiomaterials including 2-methacryloyloxyethyl phosphorylcholine (MPC) have attracted great attention with remarkable characteristics such as resistance to nonspecific protein adsorption and cell adhesion for various biomedical applications. Despite many recent reports, there is a lack of comprehensive review on the phospholipid nanobiomaterials from synthesis to diagnostic and therapeutic applications. Here, we review the synthesis and characterization of phospholipid nanobiomaterials... 

    Nanofibrillated chitosan coated highly ordered titania nanotubes array/graphene nanocomposite with improved biological characters

    , Article Carbohydrate Polymers ; Volume 254 , 2021 ; 01448617 (ISSN) Rahnamaee, S. Y ; Bagheri, R ; Heidarpour, H ; Vossoughi, M ; Golizadeh, M ; Samadikuchaksaraei, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Designing multifunctional surfaces is key to develop advanced materials for orthopedic applications. In this study, we design a double-layer coating, assembled onto the completely regular titania nanotubes (cRTNT) array. Benefiting from the biological and topological characteristics of chitosan nanofibers (CH) and reduced graphene oxide (RGO) through a unique assembly, the designed material features promoted osteoblast cell viability, prolonged antibiotic release profile, as well as inhibited bacterial biofilm formation. The synergistic effect of RGO and CH on the biological performance of the surface is investigatSed. The unique morphology of the nanofibers leads to the partial coverage of... 

    A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for ph-responsive wound healing acceleration

    , Article Advanced Healthcare Materials ; Volume 10, Issue 3 , 2021 ; 21922640 (ISSN) Ahmadian, Z ; Correia, A ; Hasany, M ; Figueiredo, P ; Dobakhti, F ; Eskandari, M. R ; Hosseini, S.H ; Abiri, R ; Khorshid, S ; Hirvonen, J ; Santos, H. A ; Shahbazi, M. A ; Sharif University of Technology
    Wiley-VCH Verlag  2021
    Abstract
    Generation of reactive oxygen species, delayed blood clotting, prolonged inflammation, bacterial infection, and slow cell proliferation are the main challenges of effective wound repair. Herein, a multifunctional extracellular matrix-mimicking hydrogel is fabricated through abundant hydrogen bonding among the functional groups of gelatin and tannic acid (TA) as a green chemistry approach. The hydrogel shows adjustable physicochemical properties by altering the concentration of TA and it represents high safety features both in vitro and in vivo on fibroblasts, red blood cells, and mice organs. In addition to the merit of facile encapsulation of cell proliferation-inducing hydrophilic drugs,... 

    A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for ph-responsive wound healing acceleration

    , Article Advanced Healthcare Materials ; Volume 10, Issue 3 , 2021 ; 21922640 (ISSN) Ahmadian, Z ; Correia, A ; Hasany, M ; Figueiredo, P ; Dobakhti, F ; Eskandari, M. R ; Hosseini, S. H ; Abiri, R ; Khorshid, S ; Hirvonen, J ; Santos, H. A ; Shahbazi, M. A ; Sharif University of Technology
    Wiley-VCH Verlag  2021
    Abstract
    Generation of reactive oxygen species, delayed blood clotting, prolonged inflammation, bacterial infection, and slow cell proliferation are the main challenges of effective wound repair. Herein, a multifunctional extracellular matrix-mimicking hydrogel is fabricated through abundant hydrogen bonding among the functional groups of gelatin and tannic acid (TA) as a green chemistry approach. The hydrogel shows adjustable physicochemical properties by altering the concentration of TA and it represents high safety features both in vitro and in vivo on fibroblasts, red blood cells, and mice organs. In addition to the merit of facile encapsulation of cell proliferation-inducing hydrophilic drugs,... 

    The prominent role of fully-controlled surface co-modification procedure using titanium nanotubes and silk fibroin nanofibers in the performance enhancement of Ti6Al4V implants

    , Article Surface and Coatings Technology ; Volume 412 , 2021 ; 02578972 (ISSN) Goudarzi, A ; Sadrnezhaad, K ; Johari, N ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Modification of orthopedic implant surfaces through advanced nanoscale coating methods has made a major breakthrough in maximizing implantation success. Adjustable drug release and biocompatibility are among the most momentous features since they can significantly prevent the implantation failure. In this study, the potential of silk fibroin (SF) nanofibers fabricated via electrospinning, along with titanium oxide nanotube arrays (TNTs) formed through anodization, were exploited to produce a cyto-biocompatible, well-controlled drug delivery system. Highly-ordered TNTs were formed in an organic electrolyte solution within 2 h at the voltage of 60 V under temperature controlling (16 °C).... 

    Fabrication of a novel 3D scaffold for cartilage tissue repair: In-vitro and in-vivo study

    , Article Materials Science and Engineering C ; Volume 128 , 2021 ; 09284931 (ISSN) Haghighi, P ; Shamloo, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Self-repairing is not an advanced ability of articular cartilage. Tissue engineering has provided a novel way for reconstructing cartilage using natural polymers because of their biocompatibility and bio-functionality. The purpose of cartilage tissue engineering is to design a scaffold with proper pore structure and similar biological and mechanical properties to the native tissue. In this study, porous scaffolds prepared from gelatin, chitosan and silk fibroin were blended with varying ratios. Between the blends of chitosan (C), gelatin (G) and silk fibroin (S), the scaffold with the weight per volume ratio of 2:2:3 (w/v) showed the most favorable and higher certain properties than the... 

    Aptamer hybrid nanocomplexes as targeting components for antibiotic/gene delivery systems and diagnostics: a review

    , Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 4237-4256 Ahmadi, S ; Arab, Z ; Safarkhani, M ; Nasseri, B ; Rabiee, M ; Tahriri, M ; Webster, T. J ; Tayebi, L ; Rabiee, N ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Abstract
    With the passage of time and more advanced societies, there is a greater emergence and incidence of disease and necessity for improved treatments. In this respect, nowadays, aptamers, with their better efficiency at diagnosing and treating diseases than antibodies, are at the center of attention. Here, in this review, we first investigate aptamer function in various fields (such as the detection and remedy of pathogens, modification of nanoparticles, antibiotic delivery and gene delivery). Then, we present aptamer-conjugated nanocomplexes as the main and efficient factor in gene delivery. Finally, we focus on the targeted co-delivery of genes and drugs by nanocomplexes, as a new exciting... 

    A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for ph-responsive wound healing acceleration

    , Article Advanced Healthcare Materials ; 2020 Ahmadian, Z ; Correia, A ; Hasany, M ; Figueiredo, P ; Dobakhti, F ; Eskandari, M. R ; Hosseini, H ; Abiri, R ; Khorshid, S ; Hirvonen, J ; Santos, H. A ; Shahbazi, M. A ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Generation of reactive oxygen species, delayed blood clotting, prolonged inflammation, bacterial infection, and slow cell proliferation are the main challenges of effective wound repair. Herein, a multifunctional extracellular matrix-mimicking hydrogel is fabricated through abundant hydrogen bonding among the functional groups of gelatin and tannic acid (TA) as a green chemistry approach. The hydrogel shows adjustable physicochemical properties by altering the concentration of TA and it represents high safety features both in vitro and in vivo on fibroblasts, red blood cells, and mice organs. In addition to the merit of facile encapsulation of cell proliferation-inducing hydrophilic drugs,... 

    Biodegradable nanopolymers in cardiac tissue engineering: from concept towards nanomedicine

    , Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 4205-4224 Mohammadi Nasr, S ; Rabiee, N ; Hajebi, S ; Ahmadi, S ; Fatahi, Y ; Hosseini, M ; Bagherzadeh, M ; Ghadiri, A. M ; Rabiee, M ; Jajarmi, V ; Webster, T. J ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Abstract
    Cardiovascular diseases are the number one cause of heart failure and death in the world, and the transplantation of the heart is an effective and viable choice for treatment despite presenting many disadvantages (most notably, transplant heart availability). To overcome this problem, cardiac tissue engineering is considered a promising approach by using implantable artificial blood vessels, injectable gels, and cardiac patches (to name a few) made from biodegradable polymers. Biodegradable polymers are classified into two main categories: natural and synthetic polymers. Natural biodegradable polymers have some distinct advantages such as biodegradability, abundant availability, and... 

    Stereolithography 3D bioprinting method for fabrication of human corneal stroma equivalent

    , Article Annals of Biomedical Engineering ; Volume 48, Issue 7 , June , 2020 , Pages 1955-1970 Mahdavi, S. S ; Abdekhodaie, M. J ; Kumar, H ; Mashayekhan, S ; Baradaran Rafii, A ; Kim, K ; Sharif University of Technology
    Springer  2020
    Abstract
    Abstract: 3D bioprinting technology is a promising approach for corneal stromal tissue regeneration. In this study, gelatin methacrylate (GelMA) mixed with corneal stromal cells was used as a bioink. The visible light-based stereolithography (SLA) 3D bioprinting method was utilized to print the anatomically similar dome-shaped structure of the human corneal stroma. Two different concentrations of GelMA macromer (7.5 and 12.5%) were tested for corneal stroma bioprinting. Due to high macromer concentrations, 12.5% GelMA was stiffer than 7.5% GelMA, which made it easier to handle. In terms of water content and optical transmittance of the bioprinted scaffolds, we observed that scaffold with... 

    A novel pathway to produce biodegradable and bioactive PLGA/TiO2 nanocomposite scaffolds for tissue engineering: Air–liquid foaming

    , Article Journal of Biomedical Materials Research - Part A ; Volume 108, Issue 6 , 2020 , Pages 1390-1407 Pelaseyed, S. S ; Madaah Hosseini, H. R ; Samadikuchaksaraei, A ; Sharif University of Technology
    John Wiley and Sons Inc  2020
    Abstract
    Poly (lactate-co-glycolate) (PLGA) is a typical biocompatible and biodegradable synthetic polymer. The addition of TiO2 nanoparticles has shown to improve compressive modulus of PLGA scaffolds and reduced fast degradation. A novel method has been applied to fabricate PLGA/TiO2 scaffolds without using any inorganic solvent, with aim of improving the biocompatibility, macroscale morphology, and well inter-connected pores efficacy: Air–Liquid Foaming. Field Emission Scanning Electron Microscopy (FESEM) revealed an increase in interconnected porosity of up to 98%. As well the compressive testing showed enhancement in modulus. Bioactivity and in vitro degradation were studied with immersion of...