Loading...
Search for: cellulose
0.01 seconds
Total 131 records

    Design, preparation, and characterization of silk fibroin/carboxymethyl cellulose wound dressing for skin tissue regeneration applications

    , Article Polymer Engineering and Science ; Volume 62, Issue 9 , 2022 , Pages 2741-2749 ; 00323888 (ISSN) Farshi, P ; Salarian, R ; Rabiee, M ; Alizadeh, S ; Gholipourmalekabadi, M ; Ahmadi, S ; Rabiee, N ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Silk fibroin (SF) has been broadly applied in wound dressing fabrication because of its proper features for wound healing. In this work, we developed a carboxymethyl cellulose (CMC)/gelatin blend film with different concentrations of glycerol, and modified the optimized film with an SF layer through electrospinning process. Tensile strength and cell viability evaluation of blend films demonstrated that the glycerol content of 3% could be suitable as the substrate layer for the two-layer wound dressing. The morphology of the blend film and electrospun nanofibers was obtained from scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). It concluded that... 

    Cellulose nanofiber-based ethylene scavenging antimicrobial films incorporated with various types of titanium dioxide nanoparticles to extend the shelf life of fruits

    , Article ACS Applied Polymer Materials ; Volume 4, Issue 7 , 2022 , Pages 4765-4773 ; 26376105 (ISSN) Riahi, Z ; Ezati, P ; Rhim, J. W ; Bagheri, R ; Pircheraghi, G ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    TiO2 nanotubes (TNTs) were synthesized hydrothermally and modified by Cu2O using a sol-gel method to provide photocatalytic activity in visible light. Cellulose nanofiber (CNF)-based films were prepared by adding TiO2, TNTs, and Cu2O-modified TNT (TNT-Cu2O). The TiO2-based nanoparticles (TiO2, TNTs, and TNT-Cu2O) were uniformly distributed in the base polymer to make compatible and flexible films. The incorporation of nanoparticles significantly enhanced the UV-shielding properties of the film while slightly decreasing the transparency. Incorporating nanofillers improved the film's mechanical and water resistance properties depending on the nanoparticle type. The TNT-Cu2O-added CNF film... 

    An electroconductive, thermosensitive, and injectable chitosan/pluronic/gold-decorated cellulose nanofiber hydrogel as an efficient carrier for regeneration of cardiac tissue

    , Article Materials ; Volume 15, Issue 15 , 2022 ; 19961944 (ISSN) Tohidi, H ; Maleki Jirsaraei, N ; Simchi, A ; Mohandes, F ; Emami, Z ; Fassina, L ; Naro, F ; Conti, B ; Barbagallo, F ; Sharif University of Technology
    MDPI  2022
    Abstract
    Myocardial infarction is a major cause of death worldwide and remains a social and healthcare burden. Injectable hydrogels with the ability to locally deliver drugs or cells to the damaged area can revolutionize the treatment of heart diseases. Herein, we formulate a thermo-responsive and injectable hydrogel based on conjugated chitosan/poloxamers for cardiac repair. To tailor the mechanical properties and electrical signal transmission, gold nanoparticles (AuNPs) with an average diameter of 50 nm were physically bonded to oxidized bacterial nanocellulose fibers (OBC) and added to the thermosensitive hydrogel at the ratio of 1% w/v. The prepared hydrogels have a porous structure with open... 

    Magnetic carboxymethyl cellulose/silk fibroin hydrogel embedded with halloysite nanotubes as a biocompatible nanobiocomposite with hyperthermia application

    , Article Materials Chemistry and Physics ; Volume 287 , 2022 ; 02540584 (ISSN) Eivazzadeh Keihan, R ; Choopani, L ; Aghamirza Moghim Aliabadi, H ; Ganjali, F ; Kashtiaray, A ; Maleki, A ; Ahangari Cohan, R ; Salimi Bani, M ; Komijani, S ; Ahadian, M. M ; Salehpour, N ; Mahdavi, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    A novel and high potent magnetic nanobiocomposite was prepared based on Carboxymethyl cellulose (CMC) and epichlorohydrin (ECH) cross-linker interactions to form a three-dimensional cross-linked CMC hydrogel followed by silk fibroin (SF) and halloysite nanotubes (HNTs) modifications and further in situ Fe3O4 magnetic nanoparticles (MNPs) formation. Different analytical techniques like FT-IR, EDX, FE-SEM, XRD, TGA, and VSM were used to characterize the structure of the prepared nanobiocomposite. The spherical morphology of Fe3O4 MNPs and tubular HNTs were presented in the FE-SEM images. In biological tests, since the hemolysis percent was even less than the negative control, the CMC... 

    Recent advancements, trends, fundamental challenges and opportunities in spray deposited cellulose nanofibril films for packaging applications

    , Article Science of the Total Environment ; Volume 836 , 2022 ; 00489697 (ISSN) Nadeem, H ; Athar, M ; Dehghani, M ; Garnier, G ; Batchelor, W ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Plastic packaging is causing a serious environmental concern owing to its difficulty in degrading and micro-particulates' emissions. Developing biodegradable films has gained research attention to overcome ecological and health issues associated with plastic based packaging. One alternative substitute for petroleum-based plastic is nanocellulose based films, having distinguishing characteristics such as biodegradability, renewability, and non-toxicity. Nanocellulose is classified into three major types, i.e., cellulose nanofibril, cellulose nanocrystals, and bacterial nanocellulose. However, the scope of this review is limited to cellulose nanofibril (CNF) because this is the only one of... 

    Application of magnetic sulfonated Alnus waste leaves as a heterogeneous catalyst for multi-component reactions; comparison and evaluation of acidity of eleven different leaves

    , Article Reaction Kinetics, Mechanisms and Catalysis ; Volume 135, Issue 2 , 2022 , Pages 811-833 ; 18785190 (ISSN) Moghaddam, F. M ; Daneshfar, M ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    A comprehensive study was carried out for the first time on the acidity of eleven different leaves. After functionalization of the leaves with –SO3H groups, the most acidic one was magnetized using nickel ferrite nanoparticles. This novel, inexpensive, green and biodegradable catalyst showed high activity in the synthesis of pyrazoline and 2-amino nicotinonitriles. Some compounds are new and have never been synthesized before and confirmed by FT-IR, 1H NMR and 13C NMR analysis. All of these compounds possess multiple biological activities. The heterogeneous magnetic catalyst (NiFe2O4-Alnus-SO3H) was characterized by various physicochemical techniques such as FT-IR spectroscopy, field... 

    Superhydrophobic and thermally conductive carbon black/hexagonal boron nitride@Fe3O4/cellulose composite paper for electromagnetic interference shielding

    , Article Synthetic Metals ; Volume 285 , 2022 ; 03796779 (ISSN) Habibi, N ; Pourjavadi, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Herein, a series of superhydrophobic thin polyacrylic resin-coated carbon black (CB)/hexagonal boron nitride (h-BN)@Fe3O4/cellulose composite papers with good flexibility, low density (~0.67 g/cm3), high electrical conductivity (~0.065 S/cm), good thermal conductivity (0.462 W.m−1. K−1), and with water contact angle (WCA) of 153° were successfully fabricated by a facile dip-coating/spraying method. The CB-BN@Fe3O4 distribution in cellulose matrix provided high electrical conductivity in the in-plane and thickness directions. The electrical conductivity in both in-plane and thickness directions increased by increasing the number of vacuum-assisted dip-coating cycles. Moreover, these... 

    Carboxymethyl cellulose-based functional film integrated with chitosan-based carbon quantum dots for active food packaging applications

    , Article Progress in Organic Coatings ; Volume 166 , 2022 ; 03009440 (ISSN) Riahi, Z ; Rhim, J. W ; Bagheri, R ; Pircheraghi, G ; Lotfali, E ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    A chitosan-based carbon quantum dots (CQDs) with multifunctional properties were synthesized using a hydrothermal process. The CQDs were spherical with an average size of 7.8 ± 2.4 nm. The CQD showed strong antioxidant activity, potent antibacterial activity against E. coli and L. monocytogenes, and antifungal activity against A. niger and P. chrysogenum. In addition, the prepared CQD showed negligible cytotoxicity against L929 cells even at a concentration of 500 μg/mL. Carboxymethyl cellulose (CMC)-based functional films were fabricated by adding various amounts of CQD. The CQDs were evenly dispersed in the polymer matrix to form a highly transparent UV-blocking film. The addition of CQD... 

    Synergistic effect of reduced graphene oxide and carbon black as hybrid light absorber for efficient and antifouling texture-based solar steam generator

    , Article Solar Energy ; Volume 238 , 2022 , Pages 226-237 ; 0038092X (ISSN) Simayee, M ; Iraji zad, A ; Esfandiar, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Efficient utilization of solar energy as the cleanest and most plentiful natural resource for drinking water is a water is as sustianble and environmental friendly approach to obviate long-standing water scarcity. Carbon-based photothermal absorbers due to broadband light absorption are very interesting in interfacial solar steam generation systems. Herein, we investigate the convenient application of reduced graphene oxide (rGO) nanosheets with carbon black (CB) nanoparticles on the cotton fabric as a flexible texture-based photothermal absorber. Polyurethane (PU) as a self-floating insulator foam was selected to manage the energy loss and preserve light converted to heat on the fabric... 

    Synergistic Wound Healing by Novel Ag@ZIF-8 Nanostructures

    , Article International Journal of Pharmaceutics ; Volume 629 , 2022 ; 03785173 (ISSN) Barjasteh, M ; Mohsen Dehnavi, S ; Ahmadi Seyedkhani, S ; Yahya Rahnamaee, S ; Golizadeh, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this paper, novel zeolitic imidazolate framework-8 (ZIF-8) functionalized with Ag (Ag@ZIF-8) nanoparticles were synthesized through a green, facile and environmental-friendly process for wound dressing applications. X-ray diffraction revealed that the ZIF-8 and Ag@ZIF-8 were successfully synthesized by green solvents at ambient temperature. Field-emission scanning electron microscopy indicated a homogeneous porous blend of ∼30 nm chitosan/bacterial cellulose (CS/BC) nanofibers embedded with ∼80–110 nm nanoparticles of the ZIF-8 and Ag@ZIF-8. Transmission electron microscopy revealed the Ag@ZIF-8 nanostructures consist of ZIF-8 cores that are covered by 5–20 nm Ag nanoparticles. MTT assay... 

    Ferric metformin drug complex supported on magnetic nanofiber cellulose; An efficient access to 4-H pyrans derivatives and determination of their antimicrobial activity

    , Article Synthetic Communications ; Volume 52, Issue 7 , 2022 , Pages 974-993 ; 00397911 (ISSN) Matloubi Moghaddam, F ; Daneshfar, M ; Moghimi, H ; Daneshfar, Z ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Magnetic nanofiber cellulose (NFC) was selected as a biopolymer surface for the reaction with ferric metformin and a novel nanocatalyst was prepared. This green heterogeneous organometallic catalyst was analyzed by physiochemical techniques. The new metformin drug complex supported on magnetic NFC was used as a powerful and efficient catalyst for the synthesis of functionalized 4H-pyrans derivatives. The antimicrobial activity of the products showed excellent activity against all the bacterial and fungal strains (especially compounds 7q and 6r). © 2022 Taylor & Francis Group, LLC  

    Crystalline polysaccharides: A review

    , Article Carbohydrate Polymers ; Volume 275 , 2022 ; 01448617 (ISSN) Seidi, F ; Yazdi, M. K ; Jouyandeh, M ; Habibzadeh, S ; Munir, M. T ; Vahabi, H ; Bagheri, B ; Rabiee, N ; Zarrintaj, P ; Saeb, M. R ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The biodegradability and mechanical properties of polysaccharides are dependent on their architecture (linear or branched) as well as their crystallinity (size of crystals and crystallinity percent). The amount of crystalline zones in the polysaccharide significantly governs their ultimate properties and applications (from packaging to biomedicine). Although synthesis, characterization, and properties of polysaccharides have been the subject of several review papers, the effects of crystallization kinetics and crystalline domains on the properties and application have not been comprehensively addressed. This review places focus on different aspects of crystallization of polysaccharides as... 

    Influence of fine structure on the variations of thermal and mechanical properties in flax fibers modified with different alkaline treatment conditions

    , Article Journal of Natural Fibers ; Volume 19, Issue 13 , 2022 , Pages 5239-5257 ; 15440478 (ISSN) Bahrami, R ; Bagheri, R ; Dai, C ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    The alkaline treatment condition plays a crucial role in governing the ultimate properties of flax fibers. In this study, flax fibers were modified with mild alkalization and severe mercerization conditions to give fundamental insight into how the molecular-scale changes in cell wall fine structure and cellulose supramolecular structure can affect the macroscopic properties of fibers. SEM, FTIR, XRD, TGA, and DSC techniques were employed to characterize the variations in morphology, composition, crystalline structure, and thermal properties of fibers. Also, tensile tests evaluated their reinforcing performance in polypropylene-based composites. The results indicated that alkalization in 5%... 

    Influence of fine structure on the variations of thermal and mechanical properties in flax fibers modified with different alkaline treatment conditions

    , Article Journal of Natural Fibers ; 2021 ; 15440478 (ISSN) Bahrami, R ; Bagheri, R ; Dai, C ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    The alkaline treatment condition plays a crucial role in governing the ultimate properties of flax fibers. In this study, flax fibers were modified with mild alkalization and severe mercerization conditions to give fundamental insight into how the molecular-scale changes in cell wall fine structure and cellulose supramolecular structure can affect the macroscopic properties of fibers. SEM, FTIR, XRD, TGA, and DSC techniques were employed to characterize the variations in morphology, composition, crystalline structure, and thermal properties of fibers. Also, tensile tests evaluated their reinforcing performance in polypropylene-based composites. The results indicated that alkalization in 5%... 

    Multicomponent nanoparticles as means to improve anaerobic digestion performance

    , Article Chemosphere ; Volume 283 , 2021 ; 00456535 (ISSN) Baniamerian, H ; Ghofrani Isfahani, P ; Tsapekos, P ; Alvarado Morales, M ; Shahrokhi, M ; Angelidaki, I ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Sufficient quantity of trace metals is essential for a well performing anaerobic digestion (AD) process. Among the essential trace elements in active sites of multiple important enzymes for AD are iron and nickel ions. In the present study, iron and nickel in the form of Fe2O3 and NiO were coated on TiO2 nanoparticles to be used in batch and continuous operation mode. The effect of TiO2, Fe2O3–TiO2, and NiO–TiO2 nanoparticles on each step of AD process was assessed utilizing simple substrates (i.e. cellulose, glucose, acetic acid, and mixture of H2–CO2) as well as complex ones (i.e. municipal biopulp). The hydrolysis rate of cellulose substrate increased with higher dosages of the coated... 

    Influences of polymer-surfactant interaction on the drop formation process: an experimental study

    , Article Langmuir ; Volume 37, Issue 3 , 2021 , Pages 1025-1036 ; 07437463 (ISSN) Dastyar, P ; Salehi, M. S ; Firoozabadi, B ; Afshin, H ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    The interaction between polymer and surfactant molecules affects the physical properties of liquids, which could be of great importance in an abundance of processes related to drop formation. Polymer and surfactant concentration is a factor that dramatically impacts the shape of molecular networks formed in the fluid bulk and the characteristics of a forming drop. In this study, the deformation and detachment of aqueous carboxymethyl cellulose (CMC) solutions' drops containing different concentrations of sodium dodecyl sulfate (SDS) are studied experimentally. Our purpose is to determine the effects of CMC and SDS concentrations on the parameters related to the formation process, including... 

    The effect of polymeric surfactant content on the mechanical properties of Al/GNP nanocomposites

    , Article Materials Chemistry and Physics ; Volume 257 , 2021 ; 02540584 (ISSN) Moradi, M ; Abouchenari, A ; Pudine, M ; Sharifianjazi, F ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Graphene nanoplatelets (GNPs) are ideal reinforcements for improving the mechanical properties of aluminum-based matrices due to their outstanding properties. However, it essentially depends on their uniform dispersion in the matrix. In this study, the challenge of uniform dispersion of graphene was performed by functionalizing the non-covalent surface and sonication of GNPs applying non-ionic polymeric ethyl cellulose (EC) surfactant, in which a colloidal mixture was provided with Al powder and graphene, followed by sintering at 620 °C and consolidation. The density and mechanical properties of nanocomposite specimens were investigated and compared with a non-surfactant-assisted Al/GNP... 

    Pressure-engineered electrophoretic deposition for gentamicin loading within osteoblast-specific cellulose nanofiber scaffolds

    , Article Materials Chemistry and Physics ; Volume 272 , 2021 ; 02540584 (ISSN) Rahighi, R ; Panahi, M ; Akhavan, O ; Mansoorianfar, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Multi-component nanocomposite thin films (composed of cellulose nanofiber (CNF), alginate, bioglass nanoparticles (BG NPs) and gentamicin) were prepared by using cathodic electrophoretic deposition (EPD) under different isostatic pressures of 10−2 mbar (LP), atmospheric (AP), and 5 bar (HP). According to thermal gravity analysis, larger amounts of CNF and alginate could be deposited on the surface at the AP condition in comparison with the LP and HP conditions. On the other hand, higher amounts of the BG NPs could be deposited at the LP condition as compared to the other conditions. The drug (gentamicin) loading/releasing of the samples prepared at the HP condition was found to be higher... 

    Preparation of amine–modified lignin and its applicability toward online micro–solid phase extraction of valsartan and losartan in urine samples

    , Article Journal of Chromatography A ; Volume 1643 , 2021 ; 00219673 (ISSN) Taherzadeh Ghahfarrokhi, M ; Zeinali, S ; Bagheri, H ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In the present work, with the focus on an environmentally–friendly approach, some gels were prepared by synthesizing amine–modified lignin, extracted from sugarcane bagasse, and further esterification and subsequent freeze–drying. These lignin–based gels were implemented as extractive phases in an online micro–solid phase extraction (μSPE) setup in conjunction with high performance liquid chromatography (HPLC) with UV detector. The developed method was used for analytical determination of valsartan and losartan in urine samples. To study the effect of the functionalization process, the efficiency of the unmodified lignin and the functionalized lignin were compared both in the absence and the... 

    Shear-thinning droplet formation inside a microfluidic T-junction under an electric field

    , Article Acta Mechanica ; Volume 232, Issue 7 , 2021 , Pages 2535-2554 ; 00015970 (ISSN) Amiri, N ; Honarmand, M ; Dizani, M ; Moosavi, A ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Springer  2021
    Abstract
    Researchers usually simplify their simulations by considering the Newtonian fluid assumption in microfluidic devices. However, it is essential to study the behavior of real non-Newtonian fluids in such systems. Moreover, using the external electric or magnetic fields in these systems can be very beneficial for manipulating the droplet size. This study considers the simulation of the process of non-Newtonian droplets’ formation under the influence of an external electric field. The novelty of this study is the use of a shear-thinning fluid as the droplet phase in this process, which has been less studied despite its numerous applications. The effects of an external electric field on this...