Loading...
Search for: centerlines
0.006 seconds

    Autonomous runway alignment of fixed-wing unmanned aerial vehicles in landing phase

    , Article 5th International Conference on Autonomic and Autonomous Systems, ICAS 2009, Valencia, 20 April 2009 through 25 April 2009 ; 2009 , Pages 208-213 ; 9780769535845 (ISBN) Pouya, S ; Saghafi, F ; Sharif University of Technology
    2009
    Abstract
    In this paper, the development of a controller for autonomous lateral alignment of fixed-wing Unmanned Aerial Vehicles (UAVs) with runway centerline in landing phase is presented. Fuzzy Logic Control (FLC) is used in order to enable the vehicle to mimic the decision making procedure that a pilot follow in the same situation. Also, for longitudinal motion controller design for the UAV to follow a pre-defined trajectory, the pole-placement technique is used. It is assumed that the runway relative position and orientation are provided by a built in vision system and its associated image processing unit. The performance of the controller in the presence of the Gaussian noises is investigated by... 

    Compound triple jets film cooling improvements via velocity and density ratios: Large eddy simulation

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 133, Issue 3 , Mar , 2011 ; 00982202 (ISSN) Farhadi Azar, R ; Ramezanizadeh, M ; Taeibi Rahni, M ; Salimi, M ; Sharif University of Technology
    2011
    Abstract
    The flow hydrodynamic effects and film cooling effectiveness placing two small coolant ports just upstream the main jet (combined triple jets) were numerically investigated. Cross sections of all jets are rectangular and they are inclined normally into the hot cross-flow. The finite volume method and the SIMPLE algorithm on a multiblock nonuniform staggered grid were applied. The large-eddy simulation approach with three different subgrid scale models was used. The obtained results showed that this flow configuration reduces the mixing between the freestream and the coolant jets and hence provides considerable improvements in film cooling effectiveness (both centerline and spanwise averaged... 

    Concavity degree: A new feature for chromosome centromere localization

    , Article AISP 2012 - 16th CSI International Symposium on Artificial Intelligence and Signal Processing ; 2012 , Pages 58-63 ; 9781467314794 (ISBN) Mohammadi, M. R ; Sharif University of Technology
    2012
    Abstract
    Analyzing the features of the chromosomes can be very useful for diagnosis of many genetic disorders or prediction of the possible abnormalities that may occur in the future generations. For this purpose, karyotype is often used which to make it, there is necessary to identify each one of the 24 chromosomes from the microscopic images. Definition and extraction of the morphological and band pattern based features for each chromosome is the first step to identify them. An important class of the morphological features is the location of the chromosome's centromere. Thus, centromere localization is an initial step in designing an automatic karyotyping system. In this paper, a novel algorithm... 

    Effect of entrance position on particle dispersion in bidirectional vortex flow

    , Article Proceedings of the ASME Fluids Engineering Division Summer Conference 2009, FEDSM2009, 2 August 2009 through 6 August 2009, Vail, CO ; Volume 1, Issue PART C , 2009 , Pages 1957-1964 ; 9780791843727 (ISBN) Dehghani, S. R ; Saidi, M. H ; Mozafari, A. A ; Ghafourian, A ; Sharif University of Technology
    Abstract
    Particle dispersion in the vortex flow has been one of the most interesting subjects in recent years. Bidirectional vortex flow field is an industrial sample of rotating flow which is used to obtain advantages of better mixing and combustion. In this work penetration and dispersion quality of particles which are entering from various positions on the vortex engine walls have been numerically predicted. Head side, end side, and sidewall are considered as the entering positions. The particle has been assumed to be a rigid sphere. Initial velocity, diameter, and density of entering particles are assumed to be known. If the particle length scale is considered not to be comparable with the... 

    Effects of alloying elements and microstructure on the susceptibility of the welded HSLA steel to hydrogen-induced cracking and sulfide stress cracking

    , Article Materials Science and Engineering A ; Volume 507, Issue 1-2 , 2009 , Pages 167-173 ; 09215093 (ISSN) Beidokhti, B ; Dolati, A ; Koukabi, A. H ; Sharif University of Technology
    2009
    Abstract
    Hydrogen-induced cracking (HIC) and sulfide stress cracking (SSC) susceptibility of the submerged arc welded API 5L-X70 pipeline steel with different amounts of titanium at two levels of manganese (1.4% and 2%) were studied. The centerline segregation region (CSR) observed in the X70 pipe steel played an important role in the HIC susceptibility. Increased acicular ferrite content in the microstructure improved HIC resistance and SSC resistance, while bainite and martensite/austenite constituents deteriorated the workability of the welded specimens in sour environments. The 2% Mn-series welds showed higher SSC susceptibility than the 1.4% Mn-series welds due to the higher hardness values of... 

    Numerical investigation of corner angle and wing number effects on fluid flow characteristics of a turbulent stellar jet

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 46, Issue 1 , 2009 , Pages 25-37 ; 09477411 (ISSN) Faghani, E ; Saemi, S ; Maddahian, R ; Farhanieh, B ; Sharif University of Technology
    2009
    Abstract
    In this research the fluid dynamics characteristics of a stellar turbulent jet flow is studied numerically and the results of three dimensional jet issued from a stellar nozzle are presented. A numerical method based on control volume approach with collocated grid arrangement is employed. The turbulent stresses are approximated using k-ε and k-ω models with four different inlet conditions. The velocity field is presented and the rate of decay at jet centerline is noted. Special attention is drawn on the influence of corner angle and number of wings on mixing in stellar cross section jets. Stellar jets with three; four and five wings and 15-65° corner angles are studied. Also the effect of... 

    Numerical investigation of effect of aspect ratio of rectangular nozzles

    , Article 2008 2nd International Conference on Thermal Issues in Emerging Technologies, ThETA 2008, Cairo, 17 December 2008 through 20 December 2008 ; July , 2008 , Pages 391-398 ; 9781424435777 (ISBN) Faghani, E ; Farhanieh, B ; Maddahian, R ; Faghani, P ; Sharif University of Technology
    2008
    Abstract
    In this research the fluid and thermal characteristics of a rectangular turbulent jet flow is studied numerically. The results of three dimensional jet issued from a rectangular nozzle are presented. A numerical method employing control volume approach with collocated grid arrangement was employed. Velocity and pressure fields are coupled with SIMPLEC algorithm. The turbulent stresses are approximated using k-e model with two different inlet conditions. The velocity and temperature fields are presented and the rates of their decay at jet centerline are noted. The velocity vectors of a main flow and secondary flow are illustrated. Also effect of aspect ratio on mixing in rectangular cross... 

    Numerical simulation of developing compressible turbulent flow with heat transfer

    , Article Journal of Thermophysics and Heat Transfer ; Volume 23, Issue 4 , 2009 , Pages 801-809 ; 08878722 (ISSN) Nouri Borujerdi, A ; Ziaei Rad, M ; Seume, J. R ; Sharif University of Technology
    2009
    Abstract
    This study investigates the effects of wall heating and skin friction on the characteristics of a compressible turbulent flow in developing and developed regions of a pipe. The numerical solution is performed by finite-element-based finite volume method applied on unstructured grids. A modified κ-ε model with a two-layer equation for the near-wall region and a compressibility correction are used to predict turbulent viscosity. The results show that shear stress in fully developed flow is nearly constant from the centerline up to 75% of the pipe radius, then increases sharply next to the wall, and the ratio of the turbulent viscosity to the molecular one is less than 0.2. Under a uniform wall... 

    On the effect of inflow conditions in simulation of a turbulent round jet

    , Article Archive of Applied Mechanics ; Volume 81, Issue 10 , 2011 , Pages 1439-1453 ; 09391533 (ISSN) Faghani, E ; Saemi, S. D ; Maddahian, R ; Farhanieh, B ; Sharif University of Technology
    Abstract
    This paper investigates the impact of the inflow conditions on simulations of a round jet discharging from a wall into a large space. The fluid dynamic characteristics of a round jet are studied numerically. A numerical method based on the control volume approach with collocated grid arrangement is employed. The k-ε model is utilized to approximate turbulent stresses by considering six different inlet conditions. The velocity field is presented, and the rate of decay at the jet centerline is determined. The results showed that inflow conditions had a strong influence on the jet characteristics. This paper also investigates both sharp-edged and contoured nozzles. The effects of velocity,... 

    On the influence of centerline strain on the stability of a bimorph piezo-actuated microbeam

    , Article Scientia Iranica ; Volume 18, Issue 6 , December , 2011 , Pages 1246-1252 ; 10263098 (ISSN) Abedinnasab, M. H ; Kamali Eigoli, A ; Zohoor, H ; Vossoughi, G ; Sharif University of Technology
    2011
    Abstract
    The nonlinear equation of motion for pre-stretched EulerBernoulli beams is derived. The effect of pre-tension and pre-compression in EulerBernoulli beams is studied. It is shown that compressive strain affects the bending stiffness much more than tensile strain. Based on the derived equation, the dynamic model of bimorph piezo-actuated beams, which is accurate, yet simple, is then developed. Afterwards, the critical voltage, which makes the piezo-actuated microbeam unstable, is numerically investigated. It is shown that the strain of the centerline is proportional to the beam's aspect ratio squared. Results show that the more the aspect ratio, the less the critical voltage. In addition, it... 

    Porosity and permeability effects on centerline temperature distributions, peak flame temperature, flame structure, and preheating mechanism for combustion in porous media

    , Article Journal of Energy Resources Technology, Transactions of the ASME ; Volume 129, Issue 1 , 2007 , Pages 54-65 ; 01950738 (ISSN) Khatami F., S. R ; Safavisohi, B ; Sharbati, E ; Sharif University of Technology
    2007
    Abstract
    The applicability and usefulness of combustion in porous media is of much interest due to its competitive combustion efficiency and lower pollutants formation. In the previous works, the focus has been on the effects of combustion and heat transfer parameters such as excess air ratio, thermal power, solid conductivity, convective heat transfer coefficient, and radiation properties on centerline temperature and pollutant formations. A premixed combustion scheme and a fixed porous medium with constant geometrical parameters have been used in these works; therefore, the effects of porous material parameters have been less considered. In this research, the effects of geometrical parameters of... 

    Proposal of a new design for valveless micropumps

    , Article Scientia Iranica ; Volume 18, Issue 6 , December , 2011 , Pages 1261-1266 ; 10263098 (ISSN) Afrasiab, H ; Movahhedy, M. R ; Assempour, A ; Sharif University of Technology
    2011
    Abstract
    A new design for a valveless micropumping device has been proposed that integrates two existing pumping technologies, namely, the wall induced traveling wave and the obstacle-type valveless micropump. The liquid in the microchannel is transported by generating a traveling wave on the channel, while the placing of two asymmetric trapezoid obstacles, along the centerline of the channel inlet and outlet, leads to a significant (up to seven times) increase of the net flow rate of the device. The effectiveness of this innovative design has been proved through a verified three-dimensional finite element model. FluidStructure Interaction (FSI) analysis is performed in the framework of an Arbitrary... 

    The effect of gap size on the microstructure and mechanical properties of the transient liquid phase bonded FSX-414 superalloy

    , Article Materials and Design ; Volume 40 , September , 2012 , Pages 130-137 ; 02641275 (ISSN) Bakhtiari, R ; Ekrami, A ; Sharif University of Technology
    Elsevier  2012
    Abstract
    Optimization of transient liquid phase (TLP) bonding variables is essential to achieve a joint free from deleterious intermetallic constituents as well as with appropriate mechanical properties. In this research, TLP bonding of FSX-414 superalloy was performed using the MBF-80 interlayer. The effects of bonding time (1-30. min) and gap size (25-100 μm) were studied on the joint microstructure and its mechanical properties. Continuous centerline eutectic phases, characterized as nickel-rich and chromium-rich borides, were observed at the joints with incomplete isothermal solidification. The globular and acicular phases were seen at diffusion affected zone (DAZ). These phases could be...