Loading...
Search for: centrifugal
0.006 seconds
Total 126 records

    A new correlation on the MEXICO experiment using a 3D enhanced blade element momentum technique

    , Article International Journal of Sustainable Energy ; Vol. 33, issue. 2 , 2014 , pp. 448-460 ; ISSN: 14786451 Mahmoodi, E ; Jafari, A ; Schaffarczyk, A. P ; Keyhani, A ; Mahmoudi, J ; Sharif University of Technology
    Abstract
    The blade element momentum (BEM) theory is based on the actuator disc (AD) model, which is probably the oldest analytical tool for analysing rotor performance. The BEM codes have very short processing times and high reliability. The problems of the analytical codes are well known to the researchers: the impossibility of describing inside the one-dimensional code the three-dimensional (3D) radial flows along the span-wise direction. In this work, the authors show how the 3D centrifugal pumping affects the BEM calculations of a wind turbine rotor. Actually to ascertain the accuracy of the analytical codes, the results are compared with rotor performance, blade loads and particle image... 

    Optimal design of the volute for a turbocharger radial flow compressor

    , Article Proceedings of the ASME Turbo Expo ; Vol. 2D , 2014 ; ISBN: 9780791845639 Mojaddam, M ; Hajilouy-Benisi, A ; Movahhedy, M. R ; Sharif University of Technology
    Abstract
    In this research the design methods of radial flow compressor volutes are reviewed and the main criterions in volute primary designs are recognized and most effective ones are selected. The effective parameters i.e. spiral cross section area, circumferential area distribution, exit cone and tongue area of the compressor volute are parametrically studied to identifythe optimum values. A numerical model is prepared and verified through experimental data which are obtained from the designed turbocharger test rig. Different volutes are modeled and numerically evaluated using the same impeller and vane-less diffuser. For each model,the volute total pressure ratio, static pressure recovery and... 

    Effects of geometric factors and material properties on stress behavior in rotating disk

    , Article Indian Journal of Science and Technology ; Vol. 7, issue. 1 , Jan , 2014 , p. 1-6 Monfared, V ; Hassan, M ; Daneshmand, S ; Taheran, F ; Ghaffarivardavagh, R ; Sharif University of Technology
    Abstract
    In this study, effects of geometric factors and material properties are investigated on stress behavior of circular rotating disk with constant rotation in various industrial mechanisms using equilibrium equations, geometric relations and stress functions. In this way, research on a thin uniform and homogeneous circular disk under constant rotation is considered. The rotating motion produces centrifugal acceleration on each element of the rotating disk, and this rotating motion becomes the source of external loading for the mentioned problem. Additional exterior loadings are not assumed in this problem. It is comfortable to handle the centrifugal force loading by relating it to a body force... 

    A novel aerodynamic design method for centrifugal compressor impeller

    , Article Journal of Applied Fluid Mechanics ; Vol. 7, issue. 2 , July , 2014 , p. 329-344 Nili-Ahmadabadi, M ; Durali, M ; Hajilouy, A ; Sharif University of Technology
    Abstract
    This paper describes a new quasi-3D design method for centrifugal compressor impeller. The method links up a novel inverse design algorithm, called Ball-Spine Algorithm (BSA), and a quasi-3D analysis. Euler equation is solved on the impeller meridional plane. The unknown boundaries (hub and shroud) of numerical domain are iteratively modified by BSA until a target pressure distribution in flow passage is reached. To validate the quasi-3D analysis code, existing compressor impeller is investigated experimentally. Comparison between the quasi-3D analysis and the experimental results shows good agreement. Also, a full 3D Navier-Stokes code is used to analyze the existing and designed compressor... 

    Experimental & numerical investigation of losses in centrifugal compressor components

    , Article Proceedings of the ASME Turbo Expo, San Antonio, Tx ; Volume 6 C , 2013 ; ISBN: 9780791855249 Doustmohammadi, A. A ; Hajilouybenisi, A ; Mojaddam, M ; Sharif University of Technology
    2013
    Abstract
    In this research an analytical model for performance prediction of centrifugal compressors is developed. The loss mechanisms are investigated in impeller, diffuser and volute separately for wide operating rotational speeds of the compressor. The contributions of compressor components in total entropy generation are further studied using different experimental correlations and methods. The results are verified using experimental test results, carried out at Sharif University of technology Turbocharger laboratory which has been designed to derive performance curves of turbocharger compressors. The test rig is equipped to measure static and stagnation pressures at inlet and outlet of each... 

    Particle dispersion dependency on the entrance position in bidirectional flow

    , Article Particulate Science and Technology ; Volume 31, Issue 6 , 2013 , Pages 576-584 ; 02726351 (ISSN) Dehghani, S. R ; Saidi, M. H ; Mozafari, A. A ; Soleimani, F ; Sharif University of Technology
    2013
    Abstract
    This article presents a process of numerically predicting and experimentally verifying the dispersion quality and penetration level of fuel particles entering and moving in various directions relative to vortex engine walls. If the length scale of particles considered in this study is not comparable to the chamber length and, furthermore, the density is ignored, the effect of the particle on the flow field can be neglected and a one-way solution will be viable for the problem. The solutions in each case are carried out to estimate the particle trajectory and parameters affecting it. The governing equations are converted to a set of nonlinear, coupled, ordinary differential equations (ODEs)... 

    Friction and wear performance of copper-graphite surface composites fabricated by friction stir processing (FSP)

    , Article Wear ; Volume 304, Issue 1-2 , 2013 , Pages 1-12 ; 00431648 (ISSN) Sarmadi, H ; Kokabi, A. H ; Seyed Reihani, S. M ; Sharif University of Technology
    2013
    Abstract
    Copper-graphite composites which have low friction coefficient can be used as bearing materials in lieu of materials containing lead which cause environmental problems. So far, some methods such as powder metallurgy and centrifugal casting have been employed to produce these composites. In this study, friction stir processing (FSP) was used to produce copper-graphite surface composites. Five tools with different pin profile were employed in order to achieve a comprehensive dispersion. Results show that the tool with triangular pin gives rise to a better dispersion of graphite particles. Furthermore, four copper-graphite composites containing different graphite content were prepared using... 

    Bending-torsional flutter of a cantilevered pipe conveying fluid with an inclined terminal nozzle

    , Article Journal of Sound and Vibration ; Volume 332, Issue 12 , 2013 , Pages 3002-3014 ; 0022460X (ISSN) Firouz Abadi, R. D ; Askarian, A. R ; Kheiri, M ; Sharif University of Technology
    2013
    Abstract
    Stability analysis of a horizontal cantilevered pipe conveying fluid with an inclined terminal nozzle is considered in this paper. The pipe is modelled as a cantilevered Euler-Bernoulli beam, and the flow-induced inertia, Coriolis and centrifugal forces along the pipe as well as the follower force induced by the jet-flow are taken into account. The governing equations of the coupled bending-torsional vibrations of the pipe are obtained using extended Hamilton's principle and are then discretized via the Galerkin method. The resulting eigenvalue problem is then solved, and several cases are examined to determine the effect of nozzle inclination angle, nozzle aspect ratio, mass ratio and... 

    Preconcentration and determination of carbaryl and carbofuran in water samples using ionic liquids and in situ solvent formation microextraction

    , Article Analytical Methods ; Volume 5, Issue 9 , 2013 , Pages 2406-2412 ; 17599660 (ISSN) Tehrani, M. S ; Givianrad, M. H ; Akhoundi, L ; Akhoundi, M ; Sharif University of Technology
    2013
    Abstract
    In the present work, a novel microextraction method named in situ solvent formation microextraction (ISFME) using ionic liquids (ILs) for preconcentration of carbaryl and carbofuran in water samples is introduced. In this method, a small amount of sodium hexafluorophosphate (NaPF6), as an ion pairing agent, was added to a sample solution containing a small quantity of 1-hexyl-3-methylimidazolium tetrafluoroborate [Hmim][BF4] as a hydrophobic ionic liquid. A cloudy solution formed as a result of formation of fine droplets of 1-hexyl-3-methylimidazolium hexafluorophosphate [Hmim][PF 6]. After centrifugation, the fine droplets of the extractant phase settled to the bottom of the conical-bottom... 

    Centrifugal compressor shape modification using a proposed inverse design method

    , Article Journal of Mechanical Science and Technology ; Volume 27, Issue 3 , 2013 , Pages 713-720 ; 1738494X (ISSN) Nili Ahmadabadi, M ; Poursadegh, F ; Sharif University of Technology
    2013
    Abstract
    This paper is concerned with a quasi-3D design method for the radial and axial diffusers of a centrifugal compressor on the meridional plane. The method integrates a novel inverse design algorithm, called ball-spine algorithm (BSA), and a quasi-3D analysis code. The Euler equation is solved on the meridional plane for a numerical domain, of which unknown boundaries (hub and shroud) are iteratively modified under the BSA until a prescribed pressure distribution is reached. In BSA, unknown walls are composed of a set of virtual balls that move freely along specified directions called spines. The difference between target and current pressure distributions causes the flexible boundary to deform... 

    Vibration and dynamic analysis of oil well drillstring considering coupled axial and torsional effects using cylindrical superelement

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 14 , November , 2013 ; 9780791856437 (ISBN) Ahmadian, M. T ; Ghorbani, Sh ; Firoozbakhsh, K ; Barari, A ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    In this paper axial and torsional vibrations of a drillstring are studied using cylindrical superelement. Drillstring vibration equation is derived by calculating kinetic and potential energy and work done by external forces on drillstring, and utilizing Hamilton's principle. The model is analyzed by implementing finite element technique with consideration drillstring weight, centrifugal force due to rotation of drillstring, axial force resulting from bit with the formation contact and torsional torque caused by the stick-slip phenomenon. To calculate the vibrational response of drillstring, a computational finite element scheme was developed. For a typical case of oil well drillstring, the... 

    Experimental and numerical investigation of radial flow compressor volute shape effects in characteristics and circumferential pressure non-uniformity

    , Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 1753-1764 ; 10263098 (ISSN) Mojaddam, M ; Hajilouy Benisi, A ; Movahhedy, M. R ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    In this article, the effects of volute cross section shape and centroid profile of a radial ow compressor volute were investigated. The performance characteristics of a turbocharger compressor were obtained experimentally by measuring rotor speed and ow parameters at the inlet and outlet of the compressor. The three-dimensional ow field model of the compressor was obtained numerically solving Navier-Stokes equations with SST turbulence model. The compressor characteristic curves were plotted. For model verification, the results were compared with experimental data, showing good agreement. Modification of a volute was performed by introducing a shape factor for volute cross section geometry.... 

    Evaluating the effect of ultrasmall superparamagnetic iron oxide nanoparticles for a long-term magnetic cell labeling

    , Article Journal of Medical Physics ; Volume 38, Issue 1 , 2013 , Pages 34-40 ; 09716203 (ISSN) Shanehsazzadeh, S ; Oghabian, M. A ; Allen, B. J ; Amanlou, M ; Masoudi, A ; Daha, F. J ; Sharif University of Technology
    2013
    Abstract
    In order to evaluate the long-term viability, the iron content stability, and the labeling efficiency of mammalian cells using magnetic cell labeling; dextran-coated ultrasmall superparamagnetic iron oxide (USPIOs) nanoparticles with plain surfaces having a hydrodynamic size of 25 nm were used for this study. Tests were carried out in four groups each containing 5 flasks of 5.5 × 10 6 AD-293 embryonic kidney cells. The cell lines were incubated for 24 h using four different iron concentrations with and without protamine sulfate (Pro), washed with phosphate-buffered saline (PBS) and centrifuged three times to remove the unbounded USPIOs. Cell viability was also verified using USPIOs. There... 

    Investigation on effect of centrifugal compressor volute cross-section shape on performance and flow field

    , Article Proceedings of the ASME Turbo Expo ; Volume 8, Issue PARTS A, B, AND C , 2012 , Pages 871-880 ; 9780791844748 (ISBN) Mojaddam, M ; Benisi, A. H ; Movahhedy, M. R ; Sharif University of Technology
    2012
    Abstract
    In this article, the effects of volute cross section shape and centroid profile of a centrifugal compressor volute were investigated. The performance characteristics of a turbocharger compressor were obtained experimentally by measuring rotor speed and flow parameters at the inlet and outlet of the centrifugal compressor. The three dimensional flow field model of the compressor was obtained numerically solving Navier- Stokes equations with SST turbulence model. The compressor characteristic curves were plotted. For model verification, the results were compared with experimental data, showing good agreement. Modification of a volute was performed by introducing a shape factor for volute cross... 

    From traditional to fractional PI control: A key for generalization

    , Article IEEE Industrial Electronics Magazine ; Volume 6, Issue 3 , 2012 , Pages 41-51 ; 19324529 (ISSN) Tavazoei, M. S ; Sharif University of Technology
    IEEE  2012
    Abstract
    Proportional-integral (PI) controllers are the most common form of feedback used in industrial applications today [1][3]. The use of proportional and integral feedback also has a long history of practical applications [4]. For example, in the middle of the 18th century, centrifugal governors as the proportional feedback were applied to regulate the speed of windmills [5]. By the 19th century, it was known that using integral feedback could remove the offsets appearing in working with governors [6]. At present, PI control, still a very basic form of feedback, is also one of the first solutions often considered in the control of industrial systems [7]. On the other hand, in some applications,... 

    Investigation of the influence of permeability coefficient on the numerical modeling of the liquefaction phenomenon

    , Article Scientia Iranica ; Volume 19, Issue 2 , 2012 , Pages 179-187 ; 10263098 (ISSN) Rahmani, A ; Ghasemi Fare, O ; Pak, A ; Sharif University of Technology
    2012
    Abstract
    The soil permeability coefficient plays a key role in the process of numerical simulation of the liquefaction phenomenon. Liquefaction causes a considerable increase in soil permeability, due to the creation of easier paths for water flow. The work presented in this paper tries to investigate the effects of permeability coefficient on the results of numerical modeling of the liquefaction phenomenon. To do this, a fully coupled (u-P) formulation is employed to analyze soil displacements and pore water pressures. Two different versions of a well-calibrated critical state bounding surface plasticity model, which possesses the capability to utilize a single set of material parameters for a wide... 

    Evaluation of variation of permeability in liquefiable soil under earthquake loading

    , Article Computers and Geotechnics ; Volume 40 , 2012 , Pages 74-88 ; 0266352X (ISSN) Shahir, H ; Pak, A ; Taiebat, M ; Jeremić, B ; Sharif University of Technology
    2012
    Abstract
    Liquefaction phenomenon is usually accompanied by large amounts of settlement owing to disruption of soil structure. In addition to that, large settlement also occurs by a significant increase in soil permeability during seismic excitation. To properly simulate the post-liquefaction settlement, it is important to take the compressibility properties of the liquefied sand as well as the permeability increase into account. Using initial permeability coefficient in the course of simulation of liquefaction leads to underestimation of settlement. In addition to that, using unrealistic values for permeability may cause erroneous predictions of other aspects of soil behavior. Therefore, an accurate... 

    Dynamic behavior of pile foundations under cyclic loading in liquefiable soils

    , Article Computers and Geotechnics ; Volume 40 , 2012 , Pages 114-126 ; 0266352X (ISSN) Rahmani, A ; Pak, A ; Sharif University of Technology
    Abstract
    In this paper, a fully coupled three-dimensional dynamic analysis is carried out to investigate the dynamic behavior of pile foundations in liquefied ground. A critical state bounding surface plasticity model is used to model soil skeleton, while a fully coupled (u- P) formulation is employed to analyze soil displacements and pore water pressures. Furthermore, in this study, variation of permeability coefficient during liquefaction is taken into account; the permeability coefficient is related to excess pore water pressure ratio. Results of a centrifuge test on pile foundations are used to demonstrate the capability of the model for reliable analysis of piles under dynamic loading. Then, the... 

    Zero D and 3D analysis of the centrifugal compressor of a gas turbine and its evaluation using experimental results

    , Article ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011, 11 November 2011 through 17 November 2011 ; Volume 1 , November , 2011 , Pages 897-906 ; 9780791854877 (ISBN) Karrabi, H ; Pourfarzaneh, H ; Hajilouy Benisi, A ; Sharif University of Technology
    Abstract
    In compressor design, it is necessary to simulate the compressor before manufacturing and performing experimental studies. One of the most efficient and common modeling methods is zero D analysis using scaling method with constant coefficients. Although it is efficient in the vicinity of the design point, its results are not acceptable in the off design points due to the growing error by getting away from design points. In this research, a novel zero D analysis method is developed predict accurately the compressor performance not only in the design point but also in the off design pint. In this method, variable coefficients are used instead of constant coefficients, which are obtained based... 

    Numerical study of slip factor model, effect of inlet total pressure and gas composition on the performance curve of centrifugal compressor

    , Article ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011 ; Volume 1 , 2011 , Pages 885-895 ; 9780791854877 (ISBN) Aligooda, M. R ; Moshnofi A., M. H ; Karrabi, H ; Soleimani Tehrani, M. R ; ASME ; Sharif University of Technology
    Abstract
    Development of hardware and CFD codes, especially in turbulence model and optimization of numerical codes has led to increment in usage of CFD which is capable of simulating different experimental situations take place at laboratory. Particularly in issues related to turbo machinery, twodimensional test of blades, three-dimensional investigation of different stages and studying the effect of different parameters are very costly. By means of CFD modeling all these issues are accessible. Actual flow within the compressor is three dimensional and fully turbulent due to geometry complexity, flow velocity and viscosity. For this reason it has become more and more popular to perform 3D numerical...