Loading...
Search for: classical-theory
0.011 seconds

    Developing an Equivalent Shell Model Based on Classical and Nonlocal Theory for Vibration Analysis of Carbon Nanoscrolls

    , Ph.D. Dissertation Sharif University of Technology Taraghi Osguei, Amin (Author) ; Ahmadian, Mohammad Taghi (Supervisor) ; Asghari, Mohsen (Supervisor)
    Abstract
    Carbon nanoscroll (CNS) is a graphene sheet rolled into a spiral structure. The Equilibrium structure of a CNS depends on the elastic bending energy and van der Waals interactions between layers. In recent decade, research on CNSs received high attention after discovering new techniques to produce high purity CNSs. Modal analysis of the CNS is essential in various applications like sensors and actuators. Therefore, in this research, a shell model for free vibration analysis of the CNS is proposed. After considering CNS as an equivalent shell, the assumed mode technique is used to extract natural frequencies and mode shapes of CNSs in different boundary conditions. The effect of geometric... 

    Torsion of strain gradient bars

    , Article International Journal of Engineering Science ; Volume 49, Issue 9 , September , 2011 , Pages 856-866 ; 00207225 (ISSN) Kahrobaiyan, M. H ; Tajalli, S. A ; Movahhedy, M. R ; Akbari, J ; Ahmadian, M. T ; Sharif University of Technology
    2011
    Abstract
    The governing differential equation and both classical and non-classical boundary conditions of strain gradient bars are derived using variational approach. A closed-form analytical solution is obtained for static torsion and the characteristic equation, which gives the natural frequencies, is derived and analytically solved for the free torsional vibrations of the strain gradient microbars. A fixed-fixed microbar is considered as a specific case to investigate the torsional size-dependent static and free-vibration behavior of strain gradient microbars. The results of the current model are compared to those of the modified couple stress and classical theories  

    Torsion of an eccentrically two-phase circular nanobar

    , Article 2010 IEEE 5th International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2010, 20 January 2010 through 23 January 2010 ; January , 2010 , Pages 70-73 ; 9781424465439 (ISBN) Pahlevani, L ; Shodja, H. M ; Sharif University of Technology
    2010
    Abstract
    The effect of surface and interface elasticity in analysis of the Saint-Venant torsion problem of an eccentrically two-phase circular nanobar is considered. The problem is formulated in the context of Gurtin's surface elasticity. For a rigorous solution of the proposed problem, conformal mapping together with a Laurent series expansion are employed. At the nanoscales the usual classical theories cease to hold and the corresponding results deteriorate. The numerical results well illustrate that the torsional rigidity of the mentioned nanosized structural elements are significantly affected by the size. Some applications of the given results can be contemplated in the design of micro/nano... 

    Surface and interface effects on torsion of eccentrically two-phase fcc circular nanorods: Determination of the surface/interface elastic properties via an atomistic approach

    , Article Journal of Applied Mechanics, Transactions ASME ; Volume 78, Issue 1 , October , 2011 , Pages 0110111-01101111 ; 00218936 (ISSN) Pahlevani, L ; Shodja, H. M ; Sharif University of Technology
    2011
    Abstract
    The effect of surface and interface elasticity in the analysis of the Saint-Venant torsion problem of an eccentrically two-phase fcc circular nanorod is considered; description of the behavior of such a small structure via usual classical theories cease to hold. In this work, the problem is formulated in the context of the surface/interface elasticity. For a rigorous solution of the proposed problem, conformal mapping with a Laurent series expansion are employed together. The numerical results well illustrate that the torsional rigidity and stress distribution corresponding to such nanosized structural elements are significantly affected by the size. In order to employ surface and interface... 

    Surface/interface effects on elastic behavior of a screw dislocation in an eccentric core-shell nanowire

    , Article International Journal of Solids and Structures ; Volume 49, Issue 13 , 2012 , Pages 1665-1675 ; 00207683 (ISSN) Ahmadzadeh Bakhshayesh, H ; Gutkin, M.Y ; Shodja, H. M ; Sharif University of Technology
    2012
    Abstract
    The elastic behavior of a screw dislocation which is positioned inside the shell domain of an eccentric core-shell nanowire is addressed with taking into account the surface/interface stress effect. The complex potential function method in combination with the conformal mapping function is applied to solve the governing non-classical equations. The dislocation stress field and the image force acting on the dislocation are studied in detail and compared with those obtained within the classical theory of elasticity. It is shown that near the free outer surface and the inner core-shell interface, the non-classical solution for the stress field considerably differs from the classical one, while... 

    Surface/interface effect on the scattered fields of an anti-plane shear wave in an infinite medium by a concentric multi-coated nanofiber/nanotube

    , Article European Journal of Mechanics, A/Solids ; Volume 32 , 2012 , Pages 21-31 ; 09977538 (ISSN) Shodja, H. M ; Pahlevani, L ; Sharif University of Technology
    Abstract
    In this paper, the scattering of anti-plane shear waves in an infinite matrix containing a multi-coated nanofiber/nanotube is studied. Based on the fact that the surface to volume ratio for nano-size objects increases, the usual classical theories which generally neglect the surface/interface effects fail to provide reasonable results. Therefore, to analyze the problem the wave-function expansion method is coupled with the surface/interface elasticity theory. In order to provide some quantitative results through consideration of several examples, the knowledge of the relevant surface and/or interface properties of the corresponding constituent materials are required. For this reason, part of... 

    Strain gradient beam element

    , Article Finite Elements in Analysis and Design ; Volume 68 , June , 2013 , Pages 63-75 ; 0168874X (ISSN) Kahrobaiyan, M. H ; Asghari, M ; Ahmadian, M. T ; Sharif University of Technology
    2013
    Abstract
    The classical continuum theory is neither able to accurately model the mechanical behavior of micro/nano-scale structures nor capable of justifying the size-dependent behavior observed in these structures; so the non-classical continuum theories such as the strain gradient theory have been emerged and developed. In order to enable the finite element method (FEM) to more accurately deal with the problems in micro/nano-scale structures, a size-dependent Euler-Bernoulli beam element is developed based on the strain gradient theory. Compared to the classical Euler-Bernoulli beam element, the nodal displacement vector of the new Euler-Bernoulli beam element has an additional component, i.e. the... 

    Static pull-in analysis of microcantilevers based on the modified couple stress theory

    , Article Sensors and Actuators, A: Physical ; Volume 171, Issue 2 , 2011 , Pages 370-374 ; 09244247 (ISSN) Rahaeifard, M ; Kahrobaiyan, M. H ; Asghari, M ; Ahmadian, M. T ; Sharif University of Technology
    2011
    Abstract
    This paper investigates the deflection and static pull-in voltage of microcantilevers based on the modified couple stress theory, a non-classic continuum theory capable to predict the size effects for structures in micron and sub-micron scales. It is shown that the couple stress theory can remove the gap between the experimental observations and the classical theory based simulations for the static pull-in voltage  

    Size-dependent pull-in phenomena in nonlinear microbridges

    , Article International Journal of Mechanical Sciences ; Volume 54, Issue 1 , January , 2012 , Pages 306-310 ; 00207403 (ISSN) Rahaeifard, M ; Kahrobaiyan, M. H ; Ahmadian, M. T ; Firoozbakhsh, K ; Sharif University of Technology
    2012
    Abstract
    This paper investigates the deflection and static pull-in of microbridges based on the modified couple stress theory, a non-classic continuum theory able to predict the size effects for structures in micron and sub-micron scales. The beam is modeled using EulerBernoulli beam theory and the nonlinearities caused by mid-plane stretching have been considered. It is shown that modified couple stress theory predicts size dependent normalized deflection and pull-in voltage for microbeams while according to classical theory the normalized behavior of microbeams is independent of the size of the beam. According to results, when the thickness of the beam is in order of length scale of the beam... 

    Resonant frequency and sensitivity of an AFM microcantilever modeled by the non-local theory

    , Article ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011, 11 November 2011 through 17 November 2011 ; Volume 11 , November , 2011 , Pages 239-245 ; 9780791854976 (ISBN) Khosravani, E ; Kahrobaiyan, M. H ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    In this paper, utilizing the non-local theory, the resonant frequency and sensitivity of an AFM microcantilever are investigated. To that end, the governing equation of motion and corresponding boundary conditions are obtained using the variational approach. Afterwards, the resonant frequency and sensitivity of the AFM microcantilever are derived analytically and depicted in some figures versus the contact stiffness of the sampling surface. The results of the current model are compared to those of the classical theory. The comparison shows that the difference between the results of the non-local theory and those of the classical theory is significant when the non-local parameter is high but... 

    Quantum vacuum effects on the final fate of a collapsing ball of dust

    , Article Journal of High Energy Physics ; Volume 2017, Issue 2 , 2017 ; 11266708 (ISSN) Arfaei, H ; Noorikuhani, M ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    We consider the quantum vacuum effects of the massless scalar fields that are non-minimally coupled to the background geometry of a collapsing homogeneous ball of dust. It is shown that for a definite range of coupling constants, there are repulsive quantum vacuum effects, capable of stopping the collapse process inside the black hole and precluding the formation of singularity. The final fate of the collapse will be a black hole with no singularity, inside which the matter stays balanced. The density of the final static matter will be close to the Planck density. We show that the largest possible radius of the stable static ball inside a black hole with Schwarzschild mass M is given by... 

    Obstruction of black hole singularity by quantum field theory effects

    , Article Journal of High Energy Physics ; Volume 2016, Issue 3 , 2016 ; 11266708 (ISSN) Abedi, J ; Arfaei, H ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    Abstract: We consider the back reaction of the energy due to quantum fluctuation of the background fields considering the trace anomaly for Schwarzschild black hole. It is shown that it will result in modification of the horizon and also formation of an inner horizon. We show that the process of collapse of a thin shell stops before formation of the singularity at a radius slightly smaller than the inner horizon at the order of (Formula presented.). After the collapse stops the reverse process takes place. Thus we demonstrate that without turning on quantum gravity and just through the effects the coupling of field to gravity as trace anomaly of quantum fluctuations the formation of the... 

    Nonlinear cylindrical bending analysis of shear deformable functionally graded plates under different loadings using analytical methods

    , Article International Journal of Mechanical Sciences ; Volume 50, Issue 12 , 2008 , Pages 1650-1657 ; 00207403 (ISSN) Navazi, H. M ; Haddadpour, H ; Sharif University of Technology
    2008
    Abstract
    An exact solution is presented for the nonlinear cylindrical bending and postbuckling of shear deformable functionally graded plates in this paper. A simple power law function and the Mori-Tanaka scheme are used to model the through-the-thickness continuous gradual variation of the material properties. The von Karman nonlinear strains are used and then the nonlinear equilibrium equations and the relevant boundary conditions are obtained using Hamilton's principle. The Navier equations are reduced to a linear ordinary differential equation for transverse deflection with nonlinear boundary conditions, which can be solved by exact methods. Finally, by solving some numeral examples for simply... 

    NHEG mechanics: Laws of near horizon extremal geometry (thermo)dynamics

    , Article Journal of High Energy Physics ; Vol. 2014, issue. 3 , 2014 ; ISSN: 11266708 Hajian, K ; Seraj, A ; Sheikh-Jabbari, M. M ; Sharif University of Technology
    Abstract
    Near Horizon Extremal Geometries (NHEG) are solutions to gravity theories with SL(2, ℝ) × U(1) N (for some N) symmetry, are smooth geometries and have no event horizon, unlike black holes. Following the ideas by R. M. Wald, we derive laws of NHEG dynamics, the analogs of laws of black hole dynamics for the NHEG. Despite the absence of horizon in the NHEG, one may associate an entropy to the NHEG, as a Noether-Wald conserved charge. We work out "entropy" and "entropy perturbation" laws, which are respectively universal relations between conserved Noether charges corresponding to the NHEG and a system probing the NHEG. Our entropy law is closely related to Sen's entropy function. We also... 

    Holographic entanglement entropy for 4D conformal gravity

    , Article Journal of High Energy Physics ; Vol. 2014, issue. 2 , 2014 ; ISSN: 11266708 Alishahiha, M ; Faraji Astaneh, A ; Mohammadi Mozaffar, M. R ; Sharif University of Technology
    Abstract
    Using the proposal for holographic entanglement entropy in higher derivative gravities, we compute holographic entanglement entropy for the conformal gravity in four dimensions which turns out to be finite. However, if one subtracts the contribution of the four dimensional Gauss-Bonnet term, the corresponding entanglement entropy has a divergent term and indeed restricted to an Einstein solution of the conformal gravity, the resultant entanglement entropy is exactly the same as that in the Einstein gravity. We will also make a comment on the first law of the entanglement thermodynamics for the conformal gravity in four dimensions  

    Dynamic behaviours of carbon nanotubes under dc voltage based on strain gradient theory

    , Article Journal of Physics D: Applied Physics ; Volume 46, Issue 40 , 2013 ; 00223727 (ISSN) Fakhrabadi, M. M. S ; Rastgoo, A ; Ahmadian, M. T ; Sharif University of Technology
    2013
    Abstract
    The paper deals with scrutinizing the vibration and dynamic pull-in behaviours of carbon nanotubes with different dimensions and boundary conditions. The strain gradient theory as a nonclassical elasticity theorem is applied in this research to compensate the limitations of the classical theories in predicting the mechanical behaviours of the micro- and nanostructures in general and carbon nanotubes, in particular under electrostatic actuation. The results reveal that the mechanical properties of carbon nanotube (CNTs) computed using the strain gradient theory differ significantly with those obtained from the classical theory. The strain gradient theory leads to higher stiffness and pull-in... 

    Characterization of static behavior of electrostatically actuated micro tweezers using modified couple stress theory

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 9 November 2012 through 15 November 2012 ; Volume 9, Issue PARTS A AND B , Novembe , 2012 , Pages 581-585 ; 9780791845257 (ISBN) Darvishian, A ; Moeenfard, H ; Ghaderi, N ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    In this paper, static behavior and pull-in of micro tweezers is studied. The micro tweezer is modelled as two cantilever beams. Static behavior of the micro tweezer under the effect of electrostatic actuation is modelled using the Euler-Bernoulli beam theory. In order to capture size effects on the behavior of micro tweezers, modified couple stress theory is utilized. It is shown when the voltage between two electrodes increased from some specific value, micro beams adhere to each other and it is observed that the pull-in voltage predicted by the modified couple stress theory considerably differs with that of the classical theory of elasticity. Results of this paper can be used for accurate... 

    A nonlinear strain gradient beam formulation

    , Article International Journal of Engineering Science ; Volume 49, Issue 11 , 2011 , Pages 1256-1267 ; 00207225 (ISSN) Kahrobaiyan, M. H ; Asghari, M ; Rahaeifard, M ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    In this paper, a nonlinear size-dependent Euler-Bernoulli beam model is developed based on a strain gradient theory, capable of capturing the size effect. Considering the mid-plane stretching as the source of the nonlinearity in the beam behavior, the governing nonlinear partial differential equation of motion and the corresponding classical and non-classical boundary conditions are determined using the variational method. As an example, the free-vibration response of hinged-hinged microbeams is derived analytically using the Method of Multiple Scales. Also, the nonlinear size-dependent static bending of hinged-hinged beams is evaluated numerically. The results of the new model are compared... 

    Analysis of stress field of a screw dislocation inside an embedded nanowire using strain gradient elasticity

    , Article Scripta Materialia ; Volume 61, Issue 4 , 2009 , Pages 355-358 ; 13596462 (ISSN) Davoudi, K. M ; Gutkin, M. Yu ; Shodja, H. M ; Sharif University of Technology
    2009
    Abstract
    The stress field of a screw dislocation inside an embedded nanowire is considered within the theory of strain-gradient elasticity. It is shown that the stress singularity is removed and all stress components are continuous and smooth across the interface, in contrast with the results obtained within the classical theory of elasticity. The maximum magnitude of dislocation stress depends greatly on the dislocation position, the nanowire size, and the ratios of shear moduli and gradient coefficients of the matrix and nanowire materials. © 2009 Acta Materialia Inc