Loading...
Search for: closed-form-solutions
0.01 seconds
Total 70 records

    Analytical Deriviation of a Cooperative Guidance Law against Maneuvering Targets

    , Ph.D. Dissertation Sharif University of Technology Nikusokhan Lame, Mahdi (Author) ; Nobahari, Hadi (Supervisor)
    Abstract
    In the first part of the thesis, based on the optimal control theory, a novel approach to derive a cooperative guidance law for two pursuers with an arbitrary-order linear dynamics against one zero-lag evader with random step maneuver is proposed. This approach is intended to minimize the mean value of the resultant control effort taken over a set of possible evader maneuvers which is modeled as step function, the parameters of which are unknown. Since the resultant control effort is the minimum effort among the pursuers, we encounter the nonlinear “minˮ function in the performance index. By introducing binary parameters, it is changed to a linear function including binary parameters and... 

    Seat width requirement for skewed bridges under seismic loads

    , Article Scientia Iranica ; Vol. 21, issue. 5 , 2014 , pp. 1471-1479 ; ISSN: 10263098 Maleki, S ; Bagheri, S ; Sharif University of Technology
    Abstract
    In this paper, the dynamic characteristics of skewed bridges are explored analytically. Closed form solutions for translational and torsional periods of free vibration and mode shapes are given for slab-girder skewed bridges. Moreover, the seismic displacement of the deck of skewed bridges is calculated using the response spectrum method and its skew term is compared with the requirement of AASHTO. The effects of seismic force resisting elements, such as elastomeric bearings and end diaphragms are included. It is shown that the skew term in AASHTO's equation can underestimate the seat width requirement for some bridges. A new skew term for the bridge seat width requirement is suggested  

    Statistical analysis of read static noise margin for near/sub-threshold SRAM cell

    , Article IEEE Transactions on Circuits and Systems I: Regular Papers ; Vol. 61, Issue. 12 , November , 2014 , pp. 3386-3393 ; ISSN: 15498328 Saeidi, R ; Sharifkhani, M ; Hajsadeghi, K ; Sharif University of Technology
    Abstract
    A fast statistical method for the analysis of the Read SNM of a 6 T SRAM cell in near/subthreshold region is proposed. The method is based on the nonlinear behavior of the cell. DIBL and body effects are thoroughly considered in the derivation of an accurate closed form solution for the Read Static Noise Margin (SNM) of the near/subthreshold SRAM cell. This method uses the state space equation to derive the Read SNM of the cell as a function of threshold voltage of cell transistors. This function shows the dependency of the Read SNM on sizing, VDD, temperature, and threshold voltage variations. It provides a fast reliability analysis for a cell array of a given size and a supply voltage. It... 

    Nonlinear bending of functionally graded tapered beams subjected to thermal and mechanical loading

    , Article International Journal of Non-Linear Mechanics ; Vol. 65, issue , October , 2014 , p. 141-147 Niknam, H ; Fallah, A ; Aghdam, M. M ; Sharif University of Technology
    Abstract
    Non-linear bending analysis of tapered functionally graded (FG) beam subjected to thermal and mechanical load with general boundary condition is studied. The governing equations are derived and a discussion is made about the possibility of obtaining analytical solution. In the case of no axial force along the beam, a closed form solution is presented for the problem. For the general case with axial force, the Galerkin technique is employed to overcome the shortcoming of the analytical solution. Moreover, the Generalized Differential Quadrature (GDQ) method is also implemented to discretize and solve the governing equations in the general form and validate the results obtained from two other... 

    Material property identification of artificial degenerated intervertebral disc models - comparison of inverse poroelastic finite element analysis with biphasic closed form solution

    , Article Journal of Mechanics ; Volume 29, Issue 4 , 2013 , Pages 589-597 ; 17277191 (ISSN) Nikkhoo, M ; Hsu, Y. C ; Haghpanahi, M ; Parnianpour, M ; Wang, J. L ; Sharif University of Technology
    2013
    Abstract
    ABSTRACT Disc rheological parameters regulate the mechanical and biological function of intervertebral disc. The knowledge of effects of degeneration on disc rheology can be beneficial for the design of new disc implants or therapy. We developed two material property identification protocols, i.e., inverse poroelas-tic finite element analysis, and biphasic closed form solution. These protocols were used to find the material properties of intact, moderate and severe degenerated porcine discs. Comparing these two computational protocols for intact and artificial degenerated discs showed they are valid in defining bi-phasic/poroelastic properties. We found that enzymatic agent disrupts the... 

    MIMO radar beamforming using orthogonal decomposition of correlation matrix

    , Article Circuits, Systems, and Signal Processing ; Volume 32, Issue 4 , 2013 , Pages 1791-1809 ; 0278081X (ISSN) Shadi, K ; Behnia, F ; Sharif University of Technology
    2013
    Abstract
    MIMO radar is the next generation radar which transmits arbitrary waveforms at each one of its apertures. It has been shown that the design of waveforms for MIMO radars in order to synthesize a desired spatial beampattern is mapped into a waveform correlation matrix R design in the narrowband case. As of now, given a desired beampattern or estimated locations information of targets, calculating R has been modeled as an optimization problem like semi-definite programming. Also, in some special cases like rectangular beampattern, closed-form solutions for R has been proposed. In this paper, we introduce a fast algorithm which is capable of designing R in order to achieve more arbitrary... 

    Analytical solution for the dynamic analysis of a delaminated composite beam traversed by a moving constant force

    , Article JVC/Journal of Vibration and Control ; Volume 19, Issue 10 , March , 2013 , Pages 1524-1537 ; 10775463 (ISSN) Kargarnovin, M. H ; Ahmadian, M. T ; Jafari Talookolaei, R. A ; Sharif University of Technology
    2013
    Abstract
    A closed form solution is presented in this paper to study the dynamics of a composite beam with a single delamination under the action of a moving constant force. The delaminated beam is divided into four interconnected beams using the delamination limits as their boundaries. Governing motion equations are derived in which the differential stretching and the bending-extension coupling are considered. The method of modal analysis is adopted to derive analytically the dynamic response of each beam. The obtained results for the free vibrations of delaminated beam are verified against reported similar results in the literature. Moreover, the maximum dynamic response of such a beam is compared... 

    Modeling squeezed film air damping in torsional micromirrors using extended Kantorovich method

    , Article Meccanica ; Volume 48, Issue 4 , 2013 , Pages 791-805 ; 00256455 (ISSN) Moeenfard, H ; Ahmadian, M. T ; Farshidianfar, A ; Sharif University of Technology
    2013
    Abstract
    The current paper uses the Extended Kantorovich Method (EKM) to analytically solve the problem of squeezed film damping in micromirrors. First a one term Galerkin approximation is used and following the extended Kantorovich procedure, the solution of the Reynolds equation which governs the squeezed film damping in micromirrors is reduced to solution of two uncoupled ordinary differential equation which can be solved iteratively with a rapid convergence for finding the pressure distribution underneath the micromirror. It is shown that the EKM results are independent of the initial guess function. It is also shown that EKM is highly convergent and practically one iterate is sufficient for... 

    Longitudinal behavior of strain gradient bars

    , Article International Journal of Engineering Science ; Volume 66-67 , May , 2013 , Pages 44-59 ; 00207225 (ISSN) Kahrobaiyan, M. H ; Asghari, M ; Ahmadian, M. T ; Sharif University of Technology
    2013
    Abstract
    In this paper, the strain gradient theory, a non-classical continuum theory capable of capturing the size effect observed in micro-scale structures, is employed in order to investigate the size-dependent mechanical behavior of microbars. For a strain gradient bar, the governing equation of motion and classical and non-classical boundary conditions are derived using Hamilton's principle. Closed form solutions have been analytically obtained for static deformation, natural frequencies and mode shapes of strain gradient bars. The static deformation and natural frequencies of a clamped-clamped microbar subjected to a uniform axial distributed force are derived analytically and the results are... 

    A spectral theory formulation for elastostatics by means of tensor spherical harmonics

    , Article Journal of Elasticity ; Volume 111, Issue 1 , 2013 , Pages 67-89 ; 03743535 (ISSN) Khorshidi, A ; Shodja, H. M ; Sharif University of Technology
    2013
    Abstract
    Consider a set of (N+1)-phase concentric spherical ensemble consisting of a core region encased by a sequence of nested spherical layers. Each phase is spherically isotropic and is functionally graded (FG) in the radial direction. Determination of the elastic fields when the outermost spherical surface is subjected to a nonuniform loading and the constituent phases are subjected to some prescribed nonuniform body force and eigenstrain fields is of interest. When the outermost layer is an unbounded medium with zero eigenstrain and body force fields, then an N-phase multi-inhomogeneous inclusion problem is realized. Based on higher-order spherical harmonics, presenting a three-dimensional... 

    Lateral translation of an inextensible circular membrane embedded in a transversely isotropic half-space

    , Article European Journal of Mechanics, A/Solids ; Volume 39 , 2013 , Pages 134-143 ; 09977538 (ISSN) Eskandari, M ; Shodja, H. M ; Ahmadi, S. F ; Sharif University of Technology
    2013
    Abstract
    The asymmetric problem of lateral translation of an inextensible circular membrane embedded in a transversely isotropic half-space is addressed. With the aid of appropriate Green's functions, the governing equations of the problem are written as a set of coupled integral equations. With further mathematical transformations, the system of dual integral equations is reduced to two coupled Fredholm integral equations of the second kind which are amenable to numerical treatments. The exact closed-form solutions corresponding to two limiting cases of a membrane resting on the surface of a half-space and embedded in a full-space are derived. The jump behavior of results at the edge of the membrane... 

    Formulation for static behavior of the viscoelastic Euler-Bernoulli micro-beam based on the modified couple stress theory

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 9, Issue PARTS A AND B , 2012 , Pages 129-135 ; 9780791845257 (ISBN) Taati, E ; Nikfar, M ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    In this work an analytical solution is presented for a viscoelastic micro-beam based on the modified couple stress theory which is a non-classical theory in continuum mechanics. The modified couple stress theory has the ability to consider small size effects in micro-structures. It is strongly emphasized that without considering these effects in such structures the solution will be wrong and not suitable for designing systems in micro-scales. In this study correspondence principle is used for deriving constitutive equations for viscoelastic material based on the modified couple stress theory. Governing equilibrium equations are obtained by considering an element of micro-beam. Closedform... 

    On the free vibration response of rectangular plates, partially supported on elastic foundation

    , Article Applied Mathematical Modelling ; Volume 36, Issue 9 , September , 2012 , Pages 4473-4482 ; 0307904X (ISSN) Motaghian, S ; Mofid, M ; Akin, J. E ; Sharif University of Technology
    2012
    Abstract
    Rectangular plates on distributed elastic foundations are widely employed in footings and raft foundations of variety of structures. In particular, mounted columns and single footings may partially occupy the rectangular plate of any kind. This study deals with free vibration problem of thin rectangular plates on Winkler and Pasternak elastic foundation model which is distributed over a particular arbitrary area of the plate. Closed form solutions are developed through solving the governing differential equations of plates. Moreover, a novel mathematical approach is proposed to find the exact analytical solution of free vibration of plates with mixed or fully-clamped boundary conditions.... 

    Analysis of concrete pressure vessels in the framework of continuum damage mechanics

    , Article International Journal of Damage Mechanics ; Volume 21, Issue 6 , 2012 , Pages 843-870 ; 10567895 (ISSN) Ganjiani, M ; Naghdabadi, R ; Asghari, M ; Sharif University of Technology
    SAGE  2012
    Abstract
    In this article, a constitutive model in the framework of continuum damage mechanics is proposed to simulate the elastic behavior of concrete in tension and compression states. We assume two parts for Gibbs potential energy function: elastic and damage parts. In order to obtain the elastic-damage constitutive relation with the internal variables, two damage thermodynamic release rates in tension and compression derived from the elastic part of Gibbs potential energy are introduced. Also, two anisotropic damage tensors (tension and compression) are defined which characterize the tensile and compressive behaviors of concrete. Furthermore, two different linear hardening rules for tension and... 

    Calculation of the additional constants for fcc materials in second strain gradient elasticity: Behavior of a nano-size bernoulli-euler beam with surface effects

    , Article Journal of Applied Mechanics, Transactions ASME ; Volume 79, Issue 2 , 2012 ; 00218936 (ISSN) Shodja, H. M ; Ahmadpoor, F ; Tehranchi, A ; Sharif University of Technology
    2012
    Abstract
    In addition to enhancement of the results near the point of application of a concentrated load in the vicinity of nano-size defects, capturing surface effects in small structures, in the framework of second strain gradient elasticity is of particular interest. In this framework, sixteen additional material constants are revealed, incorporating the role of atomic structures of the elastic solid. In this work, the analytical formulations of these constants corresponding to fee metals are given in terms of the parameters of Sutton-Chen interatomic potential function. The constants for ten fcc metals are computed and tabulized. Moreover, the exact closed-form solution of the bending of a... 

    Improving Elmore model of RLC networks for applying to SWCNT interconnects

    , Article Applied Mechanics and Materials ; Volume 110-116 , 2012 , Pages 5078-5084 ; 16609336 (ISSN) ; 9783037852620 (ISBN) Behtoee, B ; Faez, R ; Sharif University of Technology
    Abstract
    Elmore delay has been widely used as an analytical estimate of the interconnect delays in the performance-driven synthesis and layout of VLSI routing topologies. In this paper, Closed-form solutions for the 50% delay, rise time and overshoots of the step response of distributed Single Wall Carbon Nanotube (SWCNT), which consists RC and RLC parts, are presented for the first time. The proposed approach retains both efficiency and simplicity of the equivalent Elmore model with significantly improved accuracy, through surface fitting (3D) instead of curve fitting (2D)  

    Nonlinear thermo-mechanical vibration analysis of functionally graded beams

    , Article Proceedings of the ASME Design Engineering Technical Conference, 28 August 2011 through 31 August 2011, Washington, DC ; Volume 1, Issue PARTS A AND B , 2011 , Pages 787-792 ; 9780791854785 (ISBN) Fallah, A ; Firoozbakhsh, K ; Pasharavesh, A ; Sharif University of Technology
    2011
    Abstract
    In this paper, nonlinear thermo-mechanical free vibration analysis of functionally graded (FG) beams investigated. Euler-Bernoulli assumptions together with Vo n Karman's strain-displacement relation are employed to derive the nonlinear governing partial differential equation (PDE) of motion. He's variational method is employed to obtain a simple and efficient approximate closed form solution of the nonlinear governing equation. Comparison between results of the present work and those available in literature shows the accuracy of presented technique. Some new results for the nonlinear natural frequencies of the FG beams such as the effect of vibration amplitude, material inhomogeneity and... 

    Closed form solutions for electrostatically actuated micromirrors considering the bending effect

    , Article ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011 ; Volume 11 , 2011 , Pages 897-902 ; 9780791854976 (ISBN) Moeenfard, H ; Ahmadian, M. T ; Moeenfard, H ; Sharif University of Technology
    2011
    Abstract
    In the current paper, analytical solutions are presented for the nonlinear problem of electrostatically actuated torsional micromirrors considering the bending of the torsional beams. Energy method is used for finding the equilibrium equations. Then the explicit function theorem is utilized for finding the equations governing the instability mode of the mirror. The presented results show that neglecting the bending effect in electrostatic torsion micro actuators can cause to several hundred percent of overestimation of the stability limits of the device. In order to study the voltage-angle and voltage-displacement behavior of the micromirror, equilibrium equations are solved using HPM.... 

    Closed form solutions for the problem of statical behavior of nano/micromirrors under the effect of capillary force and van der Waals force

    , Article ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011, 11 November 2011 through 17 November 2011, Denver, CO ; Volume 11 , 2011 , Pages 213-219 ; 9780791854976 (ISBN) Darvishian, A ; Moeenfard, H ; Zohoor, H ; Ahmadian, M. T ; ASME ; Sharif University of Technology
    2011
    Abstract
    The current paper deals with the problem of static instability of Micro/Nano mirrors under the combined effect of capillary force and van der Waals force. First the governing equations of the statical behavior of Micro/Nano mirrors under the combined effect of capillary force and casimir force is obtained using the newtons first law of motion. The dependence of the critical tilting angle on the physical and geometrical parameters of the nano/micromirror and its supporting torsional beams is investigated. It is found that existence of vdW torque can considerably reduce the stability limits of the nano/micromirror. It is also found that rotation angle of the mirror due to capillary force... 

    Analytical modeling of squeeze film damping in micromirrors

    , Article Proceedings of the ASME Design Engineering Technical Conference, 28 August 2011 through 31 August 2011, Washington, DC ; Volume 7 , 2011 , Pages 79-85 ; 9780791854846 (ISBN) Moeenfard, H ; Ahmadian, M. T ; Farshidianfar, A ; Sharif University of Technology
    2011
    Abstract
    In the current paper, Extended Kantorovich Method (EKM) has been utilized to analytically solve the problem of squeezed film damping in micromirrors. A one term Galerkin approximation is used and following the extended Kantorovich procedure, the solution of the Reynolds equation which governs the squeezed film damping in micromirrors is reduced to solution of two uncoupled ordinary differential equation which can be solved iteratively with a rapid convergence for finding the pressure distribution underneath the micromirror. It is shown that the EKM results are independent of the initial guess function. It is also shown that since EKM is highly convergent, practically one iterate is...