Loading...
Search for: closed-loop-control-systems
0.008 seconds
Total 46 records

    A supervisory control policy over an acoustic communication network

    , Article International Journal of Control ; Volume 88, Issue 5 , Dec , 2015 , Pages 946-958 ; 00207179 (ISSN) Farhadi, A ; Dumon, J ; Canudas De Wit, C ; Sharif University of Technology
    Taylor and Francis Ltd  2015
    Abstract
    This paper presents a supervisory multi-agent control policy over an acoustic communication network subject to imperfections (packet dropout and transmission delay) for localisation of an underwater flow source (e.g., source of chemical pollution, fresh water, etc.) with an unknown location at the bottom of the ocean. A two-loop control policy combined with a coding strategy for reliable communication is presented to perform the above task. A simulator is developed and used to evaluate the trade-offs between quality of communication, transmission delay and control for a fleet of autonomous underwater vehicles supervised over a noisy acoustic communication network by an autonomous surface... 

    Robust adaptive fractional order proportional integral derivative controller design for uncertain fractional order nonlinear systems using sliding mode control

    , Article Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering ; Volume 232, Issue 5 , 1 May , 2018 , Pages 550-557 ; 09596518 (ISSN) Yaghooti, B ; Salarieh, H ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    This article presents a robust adaptive fractional order proportional integral derivative controller for a class of uncertain fractional order nonlinear systems using fractional order sliding mode control. The goal is to achieve closed-loop control system robustness against the system uncertainty and external disturbance. The fractional order proportional integral derivative controller gains are adjustable and will be updated using the gradient method from a proper sliding surface. A supervisory controller is used to guarantee the stability of the closed-loop fractional order proportional integral derivative control system. Finally, fractional order Duffing–Holmes system is used to verify... 

    Adaptive synchronization of uncertain fractional-order chaotic systems using sliding mode control techniques

    , Article Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering ; Volume 234, Issue 1 , 2020 , Pages 3-9 Yaghooti, B ; Siahi Shadbad, A ; Safavi, K ; Salarieh, H ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    In this article, an adaptive nonlinear controller is designed to synchronize two uncertain fractional-order chaotic systems using fractional-order sliding mode control. The controller structure and adaptation laws are chosen such that asymptotic stability of the closed-loop control system is guaranteed. The adaptation laws are being calculated from a proper sliding surface using the Lyapunov stability theory. This method guarantees the closed-loop control system robustness against the system uncertainties and external disturbances. Eventually, the presented method is used to synchronize two fractional-order gyro and Duffing systems, and the numerical simulation results demonstrate the... 

    Intelligent trajectory tracking of an aircraft in the presence of internal and external disturbances

    , Article International Journal of Robust and Nonlinear Control ; Volume 29, Issue 16 , 2019 , Pages 5820-5844 ; 10498923 (ISSN) Emami, A ; Banazadeh, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2019
    Abstract
    This research deals with developing an intelligent trajectory tracking control approach for an aircraft in the presence of internal and external disturbances. Internal disturbances including actuators faults, unmodeled dynamics, and model uncertainties as well as the external disturbances such as wind turbulence significantly affect the performance of the common trajectory tracking control approaches. There are several fault-tolerant control approaches in the literature to overcome the effects of specific actuator or sensor faults during the flight. However, trajectory tracking control of an air vehicle in the presence of unexpected faults and simultaneous presence of wind turbulence is... 

    Full quaternion based finite-time cascade attitude control approach via pulse modulation synthesis for a spacecraft

    , Article ISA Transactions ; Volume 58 , 2015 , Pages 567-585 ; 00190578 (ISSN) Mazinan, A. H ; Pasand, M ; Soltani, B ; Sharif University of Technology
    ISA - Instrumentation, Systems, and Automation Society  2015
    Abstract
    In the aspect of further development of investigations in the area of spacecraft modeling and analysis of the control scheme, a new hybrid finite-time robust three-axis cascade attitude control approach is proposed via pulse modulation synthesis. The full quaternion based control approach proposed here is organized in association with both the inner and the outer closed loops. It is shown that the inner closed loop, which consists of the sliding mode finite-time control approach, the pulse width pulse frequency modulator, the control allocation and finally the dynamics of the spacecraft is realized to track the three-axis referenced commands of the angular velocities. The pulse width pulse... 

    Predictive directional compensator for systems with input constraints

    , Article ISA Transactions ; Volume 45, Issue 3 , 2006 , Pages 393-405 ; 00190578 (ISSN) Haeri, M ; Aalam, N ; Sharif University of Technology
    ISA - Instrumentation, Systems, and Automation Society  2006
    Abstract
    Nonlinearity caused by actuator constraint plays a destructive role in the overall performance of a control system. A model predictive controller can handle the problem by implementing a constrained optimization algorithm. Due to the iterative nature of the solution, however, this requires high computation power. In the present work we propose a new method to approach the problem by separating the constraint handling from the predictive control job. The input constraint effects are dealt with in a newly defined component called a predictive directional compensator, which works based on the directionality and predictive concepts. Through implementation of the proposed method, the... 

    Achieving transparency in series elastic actuator of sharif lower limb exoskeleton using LLNF-NARX model

    , Article 4th RSI International Conference on Robotics and Mechatronics, ICRoM 2016, 26 October 2016 through 28 October 2016 ; 2017 , Pages 398-403 ; 9781509032228 (ISBN) Zibafar, A ; Ghaffari, S ; Vossoughi, G ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    Nowadays, exoskeletons have been gaining popularity due to their potential use in rehabilitation and augmentation. These robots often utilize series elastic actuators to facilitate compliant interaction with the human. Numerous studies have been carried out with the purpose of identification and control of these type of actuators. The goal of this paper is to provide a method for dynamic modeling and identification of series elastic actuators. This model is then used in the control loop as a feed-forward term to eliminate the actuator's dynamics. Each series elastic actuator used in the Sharif wearable robot, uses a brushless DC motor, a torsional spring, a harmonic drive, a timing belt, a... 

    Delay compensation of demand response and adaptive disturbance rejection applied to power system frequency control

    , Article IEEE Transactions on Power Systems ; Volume 35, Issue 3 , 2020 , Pages 2037-2046 Hosseini, S. A ; Toulabi, M. R ; Salehi Dobakhshari, A ; Ashouri Zadeh, A ; Ranjbar, A. M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    In this paper, a modified frequency control model is proposed, where the demand response (DR) control loop is added to the traditional load frequency control (LFC) model to improve the frequency regulation of the power system. One of the main obstacles for using DR in the frequency regulation is communication delay which exists in transferring data from control center to appliances. To overcome this issue, an adaptive delay compensator (ADC) is used in order to compensate the communication delay in the control loop. In this regard, a weighted combination of several vertex compensators, whose weights are updated according to the measured delay, is employed. Generating the phase lead is the... 

    Synthetic biology-inspired robust-perfect-adaptation-achieving control systems: model reduction and stability analysis

    , Article IEEE Transactions on Control of Network Systems ; 2020 Mohammadie Zand, A ; Tavazoei, M. S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    In addition to perfectly steering the output concentration of a process network to an exogenous set-point, a desired synthetically implemented biological controller should be able to robustly maintain this regulated output in the face of the extrinsic disturbances and inherent uncertainties due to an evervarying environment besides the imprecise modeling. Such an ability, which is called robust perfect adaptation (RPA), can be achieved by integral feedback control (IFC). Answering how IFC is (biochemically) constructible in generally unknown synthetic networks has been a research focus in the community. One of these answers, which has been well investigated previously, is to utilize a simple... 

    Robust D-stability test of LTI general fractional order control systems

    , Article IEEE/CAA Journal of Automatica Sinica ; Volume 7, Issue 3 , May , 2020 , Pages 853-864 Mohsenipour, R ; Liu, X ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    This work deals with the robust D-stability test of linear time-invariant ( LTI ) general fractional order control systems in a closed loop where the system and - or the controller may be of fractional order. The concept of general implies that the characteristic equation of the LTI closed loop control system may be of both commensurate and non-commensurate orders, both the coefficients and the orders of the characteristic equation may be nonlinear functions of uncertain parameters, and the coefficients may be complex numbers. Some new specific areas for the roots of the characteristic equation are found so that they reduce the computational burden of testing the robust D-stability. Based on... 

    Robust D-stabilization analysis of fractional-order control systems with complex and linearly dependent coefficients

    , Article IEEE Transactions on Systems, Man, and Cybernetics: Systems ; 2020 Mohsenipour, R ; Fathi Jegarkandi, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    This article focuses on the robust D-stabilization analysis of fractional-order control systems where each of the system and the controller may be of fractional order. The coefficients of the system are considered as complex linear functions of interval uncertain parameters, so this article deals with fractional-order polytopic systems. First, a necessary and sufficient condition is introduced for the robust D-stabilization of the closed-loop control system based on the zero exclusion condition and the value set concept. Then, the geometric pattern of the value set of the characteristic polynomial is obtained analytically using the exposed vertices. Second, a function is presented to check... 

    An Extremely low ripple high voltage power supply for pulsed current applications

    , Article IEEE Transactions on Power Electronics ; Volume 35, Issue 8 , 2020 , Pages 7991-8001 Zarghani, M ; Mohsenzade, S ; Hadizade, A ; Kaboli, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    This article describes the development of an 18 kV, 30 kW power supply for a pulsed current load with the maximum current of 20 A and a di/dt equal to 100 A/μs. The achieved output ripple is less than 0.01%. In such a high level of precision, the most important issues are considerable difference between the instantaneous and average output powers, as well as insufficient reaction speed of the converter to the fast load change. Very low level of the voltage feedback and its sensitivity to the noise. The first issue necessitates a notable overdesign of the converter switches if the output voltage precision is dedicated to the converter. The second issue raises the problems relevant to... 

    Development of a hybrid reference model for performance evaluation of resolvers

    , Article IEEE Transactions on Instrumentation and Measurement ; Volume 70 , 2021 ; 00189456 (ISSN) Khajueezadeh, M ; Saneie, H ; Nasiri Gheidari, Z ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Resolver is an electromagnetic position sensor typically used in the closed-loop control of permanent magnet synchronous motors (PMSMs). In terms of structure and principle of operation, resolvers are very similar to electrical machines. In this regard, different numerical and analytical models have been developed for the performance prediction of a resolver, with a compromise between computational burden and accuracy. Therefore, a fast and accurate hybrid model of the resolver is presented in this article, which can be used for resolvers with different structures. Additionally, this model can easily be implemented in software such as MATLAB/SIMULINK. The performance of different variable... 

    Extension of nonlinear DMC for MIMO systems

    , Article Fourth International Conference on Control and Automation, Montreal, Que., 10 June 2003 through 12 June 2003 ; 2003 , Pages 375-379 ; 078037777X (ISBN); 9780780377776 (ISBN) Haeri, M ; Beik, H. Z ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2003
    Abstract
    In this paper an extended approach to the nonlinear DMC algorithm is proposed, which can handle constrained and MIMO systems under some defined conditions. This extension also admits higher control, M, and prediction, P, horizons that are required to increase the performance of the controller in most practical applications. Simulation results of the proposed method in the control of a stirred tank reactor with 2 inputs and 2 outputs nonlinear model are presented to illustrate effectiveness of the method and its justification. © 2003 IEEE  

    Performance analysis of an outer rotor variable reluctance resolver

    , Article IEEE Sensors Journal ; Volume 22, Issue 18 , 2022 , Pages 17761-17768 ; 1530437X (ISSN) Bahari, M ; Tootoonchian, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Variable reluctance resolver (VR-Resolver) is a robust electromagnetic sensor that provides position information for closed-loop control systems of permanent magnet synchronous motors (PMSMs). For specific motion control applications, an outer rotor structure is presented for the VR-Resolver in this article with a nonoverlapping tooth-coil windings configuration to simplify the manufacturing process. The study on the structure of the proposed position sensor is carried out, followed by the description of the working principle. The presented outer rotor VR-Resolver is simulated and its performance is investigated in detail with the aid of transient finite-element analysis (TFEA). Sensitivity... 

    Robust D-stabilization analysis of fractional-order control systems with complex and linearly dependent coefficients

    , Article IEEE Transactions on Systems, Man, and Cybernetics: Systems ; Volume 52, Issue 3 , 2022 , Pages 1823-1837 ; 21682216 (ISSN) Mohsenipour, R ; Fathi Jegarkandi, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This article focuses on the robust D-stabilization analysis of fractional-order control systems where each of the system and the controller may be of fractional order. The coefficients of the system are considered as complex linear functions of interval uncertain parameters, so this article deals with fractional-order polytopic systems. First, a necessary and sufficient condition is introduced for the robust D-stabilization of the closed-loop control system based on the zero exclusion condition and the value set concept. Then, the geometric pattern of the value set of the characteristic polynomial is obtained analytically using the exposed vertices. Second, a function is presented to check... 

    Winding function model for predicting performance of 2-DOF wound rotor resolver

    , Article IEEE Transactions on Transportation Electrification ; Volume 8, Issue 2 , 2022 , Pages 2062-2069 ; 23327782 (ISSN) Zare, F ; Nasiri Gheidari, Z ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Two-degree-of-freedom (2-DOF) electrical machines require position sensors for their motion control. In comparison with using two independent sensors, using a 2-DOF sensor enhances the closed-loop control system's performance. However, due to the 3-D structure of the 2-DOF sensor, its performance evaluation needs 3-D analysis. Also, due to helical motion the accuracy deterioration of the sensor, under mechanical faults needs more attention. Although the finite element method (FEM) is the best way to simulate such sensors, most of the commercial packages for transient finite element simulations are not able to consider two separate motions simultaneously. Furthermore, FEM has a high... 

    Maestro: A high performance AES encryption/decryption system

    , Article Proceedings - 17th CSI International Symposium on Computer Architecture and Digital Systems, CADS 2013 ; October , 2013 , Pages 145-148 ; 9781479905621 (ISBN) Biglari, M ; Qasemi, E ; Pourmohseni, B ; Computer Society of Iran; IPM ; Sharif University of Technology
    IEEE Computer Society  2013
    Abstract
    High throughput AES encryption/decryption is a necessity for many of modern embedded systems. This article presents a high performance yet cost efficient AES system. Maestro can be used in a wide range of embedded applications with various requirements and limitations. Maestro is about one million times faster than the pure software implementation. The Maestro architecture is composed of two major components; the soft processor aimed at system initialization and control, and the hardware AES engine for high performance AES encryption/decryption. A ten stage implicit pipelined architecture is considered for the AES engine. Two novel techniques are proposed in design of AES engine which enable... 

    A new multi-machine control system based on direct torque control algorithm

    , Article 7th Internatonal Conference on Power Electronics, ICPE'07, Daegu, 22 October 2007 through 26 October 2007 ; 2007 , Pages 1103-1108 ; 9781424418725 (ISBN) Mohktari, H ; Alizadeh, A ; Sharif University of Technology
    IEEE Computer Society  2007
    Abstract
    In this paper, a new and simple control method based on Direct Torque Control (DTC) of induction motors is proposed for a multi-machine system. Similar to a conventional DTC, the proposed method has two separate control loops. In the torque control loop, before selection of optimum voltage from the DTC look-up table, the system overall requirement is determined based on requirements of motors torque. Also, Switchable Master-Slave control is used in the flux control loop. The method, which is simulated for a two-parallel induction machine system, can be extended to a multi-machine system. Simulation results are also provided to investigate the performance of the proposed technique. © 2008... 

    Output feedback adaptive decentralized control of cooperative robots

    , Article ICIECA 2005: International Conference on Industrial Electronics and Control Applications 2005, Quito, 29 November 2005 through 2 December 2005 ; Volume 2005 , 2005 ; 0780394194 (ISBN); 9780780394193 (ISBN) Sadati, N ; Elhamifar, E ; Sharif University of Technology
    IEEE Computer Society  2005
    Abstract
    In this paper a decentralized control scheme for multiple cooperative manipulators is developed to achieve the desired performance in motion and force tracking, in the presence of uncertainties in dynamic equations of the robots. To eliminate the effects of uncertainties in the closed-loop performance, a new adaptive control algorithm is proposed. Based on the Lyapunov stability method, it is proved that all the error signals in the closed-loop system which is compose of a robot, an observer and a controller asymptotically converge to zero. Also to avoid the difficulties of using velocity sensors within the cooperative system, an output feedback control scheme with a linear observer is used....