Loading...
Search for: complex-reservoir
0.01 seconds

    A GIS-google earth based approach to estimating the flood damage function in large river basins

    , Article World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability - Proceedings of the 2011 World Environmental and Water Resources Congress, 22 May 2011 through 26 May 2011 ; May , 2011 , Pages 3811-3821 ; 9780784411735 (ISBN) Abrishamchi, A ; Dashti, M ; Alamdari, N ; Salavitabar, A ; Sharif University of Technology
    2011
    Abstract
    Flood as a natural disaster causes heavy human and economic losses and social unrests in most areas of the world. As flood control cost and flood damage compensation is a heavy burden over countries' budget, traditional flood design methods are being replaced by more reliable risk-based methods employing comprehensive risk analysis. In this respect, flood damage estimation is an important step in flood control systems design and analysis. In large river basins with complex reservoir systems and various land uses, flood damage estimation is complex, data-intensive, time demanding, and uncertain task requiring an intensive hydrologic and hydraulic analysis. In this study a simple approach is... 

    Prediction of waterflood performance using a modified capacitance-resistance model: A proxy with a time-correlated model error

    , Article Journal of Petroleum Science and Engineering ; Volume 198 , March , 2020 Mamghaderi, A ; Aminshahidy, B ; Bazargan, H ; Sharif University of Technology
    Elsevier B. V  2020
    Abstract
    Capacitance-Resistive Model (CRM), as a fast yet efficient proxy model, suffers from some limitations in modeling relatively complex reservoirs. Some current improvements on this proxy made it a more powerful simulator with updating parameters over time. However, the model's intrinsic uncertainty arisen from simplifying fluid-flow modeling by some limited number of constant parameters is not addressed yet. In this study, this structural limitation of CRM has been addressed by introducing a time-correlated model error, including stochastic and non-stochastic parameters, embedded into this proxy's formulation. The error term's non-stochastic parameters have been tuned to be used in forecasting... 

    Prediction of waterflood performance using a modified capacitance-resistance model: A proxy with a time-correlated model error

    , Article Journal of Petroleum Science and Engineering ; Volume 198 , 2021 ; 09204105 (ISSN) Mamghaderi, A ; Aminshahidy, B ; Bazargan, H ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Capacitance-Resistive Model (CRM), as a fast yet efficient proxy model, suffers from some limitations in modeling relatively complex reservoirs. Some current improvements on this proxy made it a more powerful simulator with updating parameters over time. However, the model's intrinsic uncertainty arisen from simplifying fluid-flow modeling by some limited number of constant parameters is not addressed yet. In this study, this structural limitation of CRM has been addressed by introducing a time-correlated model error, including stochastic and non-stochastic parameters, embedded into this proxy's formulation. The error term's non-stochastic parameters have been tuned to be used in forecasting... 

    A fully implicit single phase T-H-M fracture model for modelling hydraulic fracturing in oil sands

    , Article Journal of Canadian Petroleum Technology ; Volume 43, Issue 6 , 2004 , Pages 35-44 ; 00219487 (ISSN) Pak, A ; Chan, D. H ; Sharif University of Technology
    Society of Petroleum Engineers (SPE)  2004
    Abstract
    Enhancing oil extraction from oil sands with a hydraulic fracturing technique has been widely used in practice. Due to the complexity of the actual process, modelling of hydraulic fracturing is far behind its application. Reproducing the effects of high pore pressure and high temperature, combined with, complex stress changes in the oil sand reservoir, requires a comprehensive numerical model which is capable of simulating the fracturing phenomenon. To capture all of these aspects in the problem, three partial differential equations, i.e., equilibrium, flow, and heat transfer, should be solved simultaneously in a fully implicit (coupled) manner. A fully coupled thermo-hydro-mechanical...