Loading...
Search for: compositional-simulator
0.011 seconds
Total 25 records

    Compositional Simulation of CO2 Injection Process by Using Higher Order Finite Element Methods

    , M.Sc. Thesis Sharif University of Technology Shakourifar, Nima (Author) ; Pishvaie, Mahmmoud Reza (Supervisor)
    Abstract
    In most of the commercial and academic multiphase flow simulators, the numerical method in use is based on finite difference methods which can lead the solution toward numerical dispersions or even oscillations. These methods are very sensitive to the size of computational grid blocks. Even if we change the numerical method from finite difference to linear finite element (hFEM), still there will be such problems and size of grid blocks will be crucial in getting proper results which can lead to millions of computational grid blocks. One way to deal with this problem is using nonlinear finite element methods (pFEM) also known as higher-order finite element methods, Also compositional... 

    Simulation of Viscose Fingering in 2-D Multi-phase Miscible Displacement Processes

    , M.Sc. Thesis Sharif University of Technology Izadi Garmaseh, Zahra (Author) ; Pishvaie, Mahmoud Reza (Supervisor)
    Abstract
    In this project, a viscous instability phenomenon in CO2 injection process has been investigated. The viscosity of CO2 is much less than the reservoir fluid and the resultant mobility ratio results in the instability of sweeping front. The instability may occur in a typical permeable thief zone. This is due to severe change in gas saturation and/or relative permeability of the gas, hence reducing the sweeping efficiency. This process severely affects areal recovery and results in the inefficacy or failure of gas injection process. Here we tried to simulate the phenomena by higher order finite element methods and the results are in agreement with the geometry of thief zone. Indeed, lower... 

    Compositional Simulation of Reservoirs Using Finite Element Method

    , M.Sc. Thesis Sharif University of Technology Mehrnia, Mohammad (Author) ; Pishvaie, Mahmoud Reza (Supervisor) ; Mobin, Fatemi (Supervisor)
    Abstract
    One of the main purposes of this study is to present a robust and yet efficient semi-discretized algorithm for compositional simulation. All the equations including both the mass balance and the phase equilibrium equations are solved simultaneously which forms a Differential-Algebraic set of Equations and is solved by utilizing an efficient MATLAB solver. Furthermore, another formulation and algorithm is proposed which is consisted of two sets of equations, the primary equations (differential mass balance equations) and the secondary equations (the algebraic phase equilibrium equations). The gradient terms in the primary equations are discretized by using finite element method (Galerkin... 

    Experimental and Modeling Study of Gas/WAG Injection at Near Miscible Condition in One of Iranian Oil Reservoirs

    , M.Sc. Thesis Sharif University of Technology Shahrokhi, Omid (Author) ; Ghazanfari, Mohammad Hossein (Supervisor) ; Massihi, Mohsen (Supervisor)
    Abstract
    Most of the Iranian oil reservoirs are reaching end of their natural production life, hence they are suitable candidates for EOR common processes like gas injection and WAG injection. Studies have shown that gas and WAG injection can be applied for optimal oil production. Past studies have been mainly on gas and WAG injection in immiscible or fully miscible conditions and there is a limited amount of data available on performance of these methods in near miscible conditions. Miscible injection is not feasible in old Iranian oil reservoirs due to their depleted pressure. Moreover injection in lower pressures is attractive from both economical and operational standpoints since this reduces the... 

    Experimental and Simulation Studies of Oil Recovery Via Immiscible and Near Miscible Simultaneous Water and CO2 Injection in an Iranian Reservoir

    , M.Sc. Thesis Sharif University of Technology Seyyedsar, Mehdi (Author) ; Taghikhani, Vahid (Supervisor) ; Ghazanfari, Mohammad Hossein (Supervisor)
    Abstract
    A simultaneous water and CO2 injection study using sandstone cores with 21°API Sarvak (Azadegan field) oil has performed to evaluate oil recovery under four injection modes: secondary immiscible, secondary near-miscible, tertiary immiscible, and tertiary near-miscible. It is demonstrated that swag injection (secondary and tertiary) is an effective method for the recovery of significant amount of oil or residual oil from water-flooded porous media, but there is always some bypassing (at the pore level) of the oil due to topological effects, water-shielding and dead-end pores. In non-homogeneous porous medium, oil recovery is depending to SWAG ratio in immiscible and near-miscible conditions.... 

    Development of an Object Oriented Framework for Compositional Simulation with Dynamic Component Retrieval

    , Ph.D. Dissertation Sharif University of Technology Assareh, Mehdi (Author) ; Ghotbi, Cyrus (Supervisor) ; Pishvaie, Mahmoud Reza (Co-Advisor)
    Abstract
    Phase behavior calculations and compositional simulation for the hydrocarbon systems containing many components, are time consuming and impractical. Therefore the number of the components those describe the fluid description must be kept to a minimum using grouping techniques. In this research, it is tried to apply a new set of grouping techniques in compositional simulation of oil and gas reservoir. In these methods, the components are automatically placed in the pseudo-components, and their critical and thermo-physical properties are calculated simultaneously or after grouping process according to different mixing rules. These set of techniques areworking based on the distances between... 

    2D Compositional Simulation of Reservoirs using Finite Volume Method

    , M.Sc. Thesis Sharif University of Technology Abdollahzadeh, Soleiman (Author) ; Pishvaie, Mahmoud Reza (Supervisor) ; Fatemi, Mobin (Supervisor)
    Abstract
    One of the main purposes of this project is to propose an efficient and stable algorithm of a semi-discretized formulation for compositional simulation of oil reservoirs. In this algorithm, all the equations including both mass balances and equilibrium equations are solved simultaneously. The gradient terms are discretized by the Finite Volume Method (FVM). The resulting Differential Algebraic Equation, the so-called DAE, are solved by MATLAB functions. Another novel technique developed, handles each block equations set, separately. In this block-by-block scheme, there are two set of equations; the primary (mass balance) and secondary (equilibrium) equations. In the primary ones, the... 

    Core Scale Mechanistic Investigation of the Effect of Gas Composition on Enhanced Oil Recovery Mechanisms during Injection at Different Miscibility Conditions

    , M.Sc. Thesis Sharif University of Technology Shokri Nazarabad, Farshad (Author) ; Fatemi, Mobeen (Supervisor)
    Abstract
    The gas injection is one of the most common methods of increasing recovery from oil reservoirs, especially when a suitable source for gas is available. For example, available sources of carbon dioxide or associated gas produced from the reservoir or adjacent reservoirs. In general, the gas injection may be miscible or immiscible, which is a function of the type and composition of the gas-oil and the reservoir conditions in terms of temperature and pressure. In miscible gas injection, different mechanisms such as molecular diffusion of gas in oil or evaporation of lighter components of oil in gas and condensation of heavier components of gas in the oil phase can be shown. To occur of such... 

    Investigation of Gas Injection Process For Enhanced Oil Recovery Using Scaling Analysis

    , M.Sc. Thesis Sharif University of Technology Rahmani, Mojtaba (Author) ; Ghazanfari, Mohammad Hossein (Supervisor) ; Fatemi, Mobeen (Supervisor)
    Abstract
    The process of gas injection is well-known for Enhanced Oil Recovery (EOR) among researchers in the past few decades. This process depends on both compositional effects and IFT reduction effects as the conditions approach miscibility. This study seeks to evaluate the interactions of these two fundamental mechanisms in the process of enriched gas injection for EOR. At first, we investigate the relative dominance of the key mechanisms, as well as composition paths, component and phase distribution, and component production via compositional simulation of the process of gas injection into 1D homogeneous porous media such as slim tube and core under immiscible and near-miscible conditions. Then,... 

    Development of a One-Dimensional Compositional Simulator to Account for the Effects of Different Relative Permeability Models in Gas Condensate Reservoirs

    , M.Sc. Thesis Sharif University of Technology Mae’soumi Gholghouchan, Ali (Author) ; Masihi, Mohsen (Supervisor) ; Gerami, Shahab (Co-Advisor)
    Abstract
    As the published statistics of prestigious international institutes show, the share of natural gas from the energy basket of the world is rising. This increase is due to some reasons such as decrease in oil reserves, discovery of new gas fields, lower environmental problems, etc. The Islamic Republic of Iran is not an exception of this rule; but also because of huge gas reservoirs that Iran has, it becomes very important for the Iranian government. Hence, research for predicting the behavior of such reservoirs is a necessary need of oil and gas industry.Both thermodynamic and flow behavior of gas condensate fluids are more complicated than other reservoir fluids. Its complex thermodynamic... 

    Investigation of reinforced sic particles percentage on machining force of metal matrix composite

    , Article Modern Applied Science ; Volume 6, Issue 8 , 2012 , Pages 9-20 ; 19131844 (ISSN) Fathipour, M ; Zoghipour, P ; Tarighi, J ; Yousefi, R ; Sharif University of Technology
    MAS  2012
    Abstract
    In this study two-dimensional finite element models of Al/SiC metal matrix composites (MMC) by using of ABAQUS Explicit software are investigated. Chip formations and machining forces for three types of MMC with 5, 15 and 20% of SiC reinforcement particles were studied and compared with experimental data. The resulted chips in simulation and the generated chips in experiments have both continuous and saw tooth in appearance. On the other hand, the variation of the cutting forces with the cutting time in simulation and experiment have fluctuating diagram. This is due to the interaction between cutting tool and SiC particles during chip formation. ABAQUS explicit software was used for... 

    Modeling of CO2 solubility in brine by using neural networks

    , Article Saint Petersburg 2012 - Geosciences: Making the Most of the Earth's Resources, 2 April 2012 through 5 April 2012 ; April , 2012 Sadeghi, M. A ; Salami, H ; Taghikhani, V ; Sharif University of Technology
    European Association of Geoscientists and Engineers, EAGE  2012
    Abstract
    CO2 sequestration in geological formations, such as aquifers, is known to be the best short-term solution to CO2 mitigation. Accurate description of CO2 solubility in brine is important for evaluating the capacity of aquifers to sequester CO2. Currently, EOS-based models are widely used in reservoir compositional simulators for this purpose. However, most of these models involve complex and iterative calculations which take too much time in case of large-scale flow simulation of geological CO2 storage. In this study, a neural network model is presented for prediction of CO2 solubility in brine which is highly accurate with less computational overhead  

    Near wellbore thermal effects in a tight gas reservoir: Impact of different reservoir and fluid parameters

    , Article Journal of Unconventional Oil and Gas Resources ; Volume 16 , 2016 , Pages 1-13 ; 22133976 (ISSN) Shad, S ; Holmgrün, C ; Calogirou, A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Temperature changes in and around the wellbore could lead to significant well performance and flow assurance issues. Despite its importance, near wellbore temperature change due to gas production and its importance on well performance is not well understood. Reduction of temperature in the near well bore section, could potentially lead to hydrate formation and as a result reduction of well performance. This work is aimed at evaluating the thermal behaviour in the near wellbore region of a low to tight permeability gas reservoir (ranging between 0.02 and 10 mD) during its natural depletion. The study is conducted by using a thermal-compositional simulator. The process required to simulate... 

    In-vitro evaluation of thermoplastic starch/ beta-tricalcium phosphate nano-biocomposite in bone tissue engineering

    , Article Ceramics International ; Volume 47, Issue 11 , 2021 , Pages 15458-15463 ; 02728842 (ISSN) Taherimehr, M ; Bagheri, R ; Taherimehr, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Thermoplastic starch (TPS), as a natural based polymer, is known to have the capability to be used in biological applications due to its biocompatibility and biodegradability. In this study, mechanical properties of TPS are enhanced by incorporating bioactive β-tricalcium phosphate (β-TCP) particles for bone tissue engineering applications. Starch-based nanocomposites containing 3, 5, and 10 wt% of β-TCP nanoparticles (TT3, TT5, TT10) were made using a co-rotating twin-screw extruder. Dynamic light scattering (DLS) and X-ray diffraction (XRD) techniques were employed to analyze the nanocomposites. Moreover, degradability, swelling degree, and biomineralization in a simulated body fluid (SBF)... 

    Synthesis and characterization of CaO-P2O5-SiO2-Li2O-Fe2O3 bioactive glasses: The effect of Li2O-Fe2O3 content on the structure and in-vitro bioactivity

    , Article Journal of Non-Crystalline Solids ; 2018 ; 00223093 (ISSN) Arabyazdi, S ; Yazdanpanah, A ; Ansari Hamedani, A ; Ramedani, A ; Moztarzadeh, F ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    CaO-P2O5-SiO2-Li2O-Fe2O3 magnetic bioactive glasses were prepared through an optimized sol-gel method. This study was emphasized on the effects of magnetic content addition on the bioactive glass properties. As the need arises, we study synthesized magnetic bioactive glass physical, rheological, and biocompatible properties. The morphology and composition of these glasses were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The particle size was also determined using a laser particle size analyzer (LPSA). The thermal measurements were put through using Differential thermal analysis (DTA). In order to evaluate the... 

    Synthesis and characterization of CaO-P2O5-SiO2-Li2O-Fe2O3 bioactive glasses: The effect of Li2O-Fe2O3 content on the structure and in-vitro bioactivity

    , Article Journal of Non-Crystalline Solids ; Volume 503-504 , 2019 , Pages 139-150 ; 00223093 (ISSN) Arabyazdi, S ; Yazdanpanah, A ; Ansari Hamedani, A ; Ramedani, A ; Moztarzadeh, F ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    CaO-P2O5-SiO2-Li2O-Fe2O3 magnetic bioactive glasses were prepared through an optimized sol-gel method. This study was emphasized on the effects of magnetic content addition on the bioactive glass properties. As the need arises, we study synthesized magnetic bioactive glass physical, rheological, and biocompatible properties. The morphology and composition of these glasses were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The particle size was also determined using a laser particle size analyzer (LPSA). The thermal measurements were put through using Differential thermal analysis (DTA). In order to evaluate the... 

    A novel method for prediction of parameters of naturally fractured condensate reservoirs using pressure response analysis

    , Article Journal of Natural Gas Science and Engineering ; Vol. 19, issue , July , 2014 , p. 13-22 ; ISSN: 18755100 Haji Seyedi, S. H ; Jamshidi, S ; Masihi, M ; Sharif University of Technology
    Abstract
    Producing from gas condensate reservoirs under dew-point pressure and at constant temperature shows a complex behavior because of existing liquid condensate around the well. Zones with different mobilities generate three zones as a zone away from the well containing only gas, a zone having liquid around the well and finally a zone containing movable oil and gas. Existence of condensate around wellbore reduces gas relative permeability and as a result productivity index of the well will decrease. In fact, this condensate acts like an additional skin and investigating of this behavior can be difficult because of the complex fluid flow processes. Well test analysis in naturally fractured... 

    New technique for calculation of well deliverability in gas condensate reservoir

    , Article Deep Gas Conference and Exhibition 2010, DGAS 2010 ; January , 2010 , p. 51-59 ; SPE Deep Gas Conference and Exhibition, 24-26 January, Manama, Bahrain Publication Date 2010 Gerami, S ; Sadeghi, A ; Masihi, M ; Sharif University of Technology
    Abstract
    Well deliverability is an important issue in forecasting the performance of many gas condensate reservoirs. Condensate accumulation near the wellbore can cause a significant reduction in productivity, even in reservoirs where the fluid is very lean. Generally, the well deliverability is affected by two pressure-drop sources due to depletion and condensate buildup. Recently Rapid spreadsheet tools have developed to evaluate the well performance using material balance equation for depletion and two-phase pseudo pressure integral for well inflow performance. Most of them account for the effects of negative inertia and positive coupling in the calculation of gas relative permeability. This paper... 

    New technique for calculation of well deliverability in gas condensate reservoirs

    , Article Journal of Natural Gas Science and Engineering ; Vol. 2, issue. 1 , March , 2010 , p. 29-35 ; ISSN: 18755100 Sadeghi Boogar, A ; Masihi, M ; Sharif University of Technology
    Abstract
    Well deliverability is an important issue in forecasting the performance of many gas condensate reservoirs. Condensate accumulations near the wellbore may cause a significant reduction in the well productivity, even in the case of very lean fluids. Generally, the well deliverability is affected by two pressure-drop sources due to depletion and condensate buildup. Recently rapid spreadsheet tools have been developed to evaluate the well performance using material balance equation for depletion and two-phase pseudo pressure integral for well inflow performance. Most of them account for the effects of negative inertia and positive coupling in the calculation of gas relative permeabilities. This... 

    Modeling of asphaltene deposition during miscible CO2 Flooding

    , Article Petroleum Science and Technology ; Vol. 32, Issue. 18 , 2014 , Pages 2183-2194 ; ISSN: 10916466 Tahami, S. A ; Dabir, B ; Asghari, K ; Shahvaranfard, A ; Sharif University of Technology
    Abstract
    The authors present the results of numerical tests and simulations to investigate and analyze the likelihood of asphaltene precipitation and deposition during CO2 flooding in a reservoir. The effects of asphaltene precipitation on oil properties such as oil viscosity and density during miscible CO2 flooding process were elaborated by using Winprop software of Computer Modeling Group. Also oil properties change during CO 2 miscible flooding by numerical slim tube were investigated by a compositional simulator (GEM). A fluid sample of Saskatchewan Reservoir that had been flooded miscibly with CO2 was chosen for performing the sensitivity analyses. The results showed that asphaltene...