Loading...
Search for: compressibility
0.017 seconds
Total 1054 records

    Effect of SiC on microstructural features and compressive properties of aluminum foam [electronic resource]

    , Article Scientia Iranica ; 2014 Malekjafarian, M ; Sadrnezhaad, S.K ; Sharif Univercity of Technology
    Abstract
    Composite aluminum-SiC foam was manufactured by injection of air and addition of reinforcement particles into the liquid aluminum. Microstructure and mechanical properties of the Al/SiC foams were investigated by scanning electron microscopy and compression tests. Results showed that both the cell size and the wall thickness augmented with increasing of the SiC reinforcement particles; while SiC particles resulted in the reduction of the plateau border length. With more SiC particles, plateau stress became larger; but maximum plateau strain became smaller. The stress-strain curves exhibited serrations in the plateau region due to addition of the SiC particles  

    Microstructure and compressibility of SiC nanoparticles reinforced Cu nanocomposite powders processed by high energy mechanical milling [electronic resource]

    , Article Ceramics International ; Volume 40, Issue 1, Part A, January 2014, Pages 951–960 Akbarpour, M.R. (Mohammad Reza) ; Salahi, E ; Alikhani Hesari, F ; Simchi, A ; Kim, H. S ; Sharif University of Technology
    Abstract
    Cu/SiC nanocomposite powders with homogeneously distributed nanosize SiC particles were produced by high energy mechanical milling (MM). Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and micro-hardness and density measurements were performed to understand the effects of microstructure and hardness on compaction behavior during MM. The effects of SiC nanoparticle content and mechanical milling time on apparent density (AD) and tap density (TD) of the nanocomposite powders were systematically investigated. The Hausner ratio (HR), defined as TD to AD, were estimated to evaluate friction between the particles. Increasing MM duration and SiC content resulted... 

    Modeling and estimation of unmeasured variables in a wastegate operated turbocharger

    , Article Journal of Engineering for Gas Turbines and Power ; Vol. 136, Issue. 5 , 2014 ; ISSN: 07424795 Salehi, R ; Vossoughi, G ; Alasty, A ; Sharif University of Technology
    Abstract
    Estimation of relevant turbocharger variables is crucial for proper operation and monitoring of turbocharged (TC) engines, which are important in improving fuel economy of vehicles. This paper presents mean-value models developed for estimating gas flow over the turbine and the wastegate (WG), the wastegate position, and the compressor speed in a TC gasoline engine. The turbine is modeled by an isentropic nozzle with a constant area and an effective pressure ratio calculated from the turbine upstream and downstream pressures. Another physically sensible model is developed for estimating either the WG flow or position. Provided the WG position is available, the WG flow is estimated using the... 

    Unilateralization of MMIC distributed amplifiers

    , Article IEEE Transactions on Microwave Theory and Techniques ; Vol. 62, issue. 12 , 2014 , pp. 3041-3052 ; ISSN: 00189480 Nikandish, G ; Medi, A ; Sharif University of Technology
    Abstract
    This paper presents an unilateralization technique for distributed amplifiers (DAs) based on the transformer coupling between the gate and drain lines. Theoretical analysis of the DA indicates that the voltage waves in the gate and drain lines can be described by a system of linear partial differential equations. The transformer coupling between the lines allows for cancellation of the reverse transmission coefficient of the system. There is an optimal value for the coupling coefficient between the lines that unilateralizes the DA. This optimal coupling coefficient is derived in terms of the gate-drain capacitance and capacitances of the gate and drain lines. Using the proposed technique,... 

    Quantum achievability proof via collision relative entropy

    , Article IEEE Transactions on Information Theory ; Vol. 60, issue. 12 , 2014 , pp. 7980-7986 ; ISSN: 00189448 Beigi, S ; Gohari, A
    Abstract
    In this paper, we provide a simple framework for deriving one-shot achievable bounds for some problems in quantum information theory. Our framework is based on the joint convexity of the exponential of the collision relative entropy and is a (partial) quantum generalization of the technique of Yassaee et al. from classical information theory. Based on this framework, we derive one-shot achievable bounds for the problems of communication over classical-quantum channels, quantum hypothesis testing, and classical data compression with quantum side information. We argue that our one-shot achievable bounds are strong enough to give the asymptotic achievable rates of these problems even up to the... 

    A new cubic equation of state for sweet and sour natural gases even when composition is unknown

    , Article Fuel ; Vol. 134, issue , 2014 , pp. 333-342 ; ISSN: 00162361 Jarrahian, A ; Heidaryan, E ; Sharif University of Technology
    Abstract
    In this paper, the Heidaryan and Jarrahian equation of state (Heidaryan and Jarrahian, 2013) has been adapted as a first worldwide cubic EOS to calculate the density of dry natural gases, wet natural gases, and single-phase gas condensates "sweet and sour mixtures" (up to 73.85, 97.63 and 38.37 mol percent of H2S, CO2, and N2 respectively) even when the gas composition is unknown, through new gas specific gravity correlation equations. Correction terms of water content as high as 10 mol percent of H2O and hythane (natural gas + hydrogen) as high as 74.9 mol percent of H2 were obtained. The equation of state was validated with 8985 experimental compressibility factor data points from 308... 

    Effect of nano-particles and aminosilane interaction on the performances of cement-based composites: An experimental study

    , Article Construction and Building Materials ; Vol. 66 , 2014 , Pages 113-124 ; ISSN: 09500618 Hosseini, P ; Hosseinpourpia, R ; Pajum, A ; Khodavirdi, M. M ; Izadi, H ; Vaezi, A ; Sharif University of Technology
    Abstract
    The aim of the present study was to experimentally investigate the interaction between a low replacement ratio of different nano-particles (SiO2, Al2O3, clay, and CaCO3) and aminosilane in the matrices of cement paste and mortar. Results showed that the optimum content of aminosilane for improving the 28-day compressive strength of cement mortar was 0.75% (by weight of the total binder). The utilization of nano-SiO2 and nano-clay particles improved the strengths of the cement mortar containing hybrid systems of nano-particles/aminosilane at early (7 days) and middle curing ages (28 and 91 days). The 28-day compressive strength enhancement of cement mortar with hybrid systems of nano-SiO... 

    Microstructure, mechanical properties, corrosion behavior and cytotoxicity of Mg-Zn-Al-Ca alloys as biodegradable materials

    , Article Journal of Alloys and Compounds ; Vol. 607 , 2014 , Pages 1-10 ; ISSN: 09258388 Homayun, B ; Afshar, A ; Sharif University of Technology
    Abstract
    Recently, considerable attentions have been paid to alloy Mg-4Zn-0.2Ca for biomedical applications due to its suitable biocompatibility and acceptable mechanical properties. In this work, the effects of the addition of different amounts of Al on microstructure, mechanical properties, degradation behavior, and biocompatibility of this alloy were investigated. The corrosion behaviors of the alloys were investigated through polarization tests, chronoamperometry analysis, immersion tests, and EIS experiments. The mechanical properties were analyzed by using tensile tests and compression tests. The results showed that the addition of Al up to 3 wt.% considerably modifies the degradation behaviors... 

    Multi criteria site selection model for wind-compressed air energy storage power plants in Iran

    , Article Renewable and Sustainable Energy Reviews ; Vol. 32 , April , 2014 , pp. 579-590 ; ISSN: 13640321 Satkin, M ; Noorollahi, Y ; Abbaspour, M ; Yousefi, H ; Sharif University of Technology
    Abstract
    In this research, a site selection method for wind-compressed air energy storage (wind-CAES) power plants was developed and Iran was selected as a case study for modeling. The parameters delineated criteria for potential wind development localities for wind-CAES power plant sites. One important consequence of this research was the identification of the wind energy potential for wind-CAES sites. The theoretical wind energy potential of Iran of greater than 50 W/m2 was identified from a wind atlas of Iran. The model produced factor maps by considering the boundary conditions of the input data and created geo-databases from the outputs maps. The main factor maps were electrical grids and... 

    Evaluation of ascorbic acid-loaded calcium phosphate bone cements: Physical properties and in vitro release behavior

    , Article Ceramics International ; Vol. 40, issue. 3 , April , 2014 , pp. 3961-3968 ; ISSN: 02728842 Hemmati, K ; Hesaraki, S ; Nemati, A ; Sharif University of Technology
    Abstract
    In this study, different concentrations of ascorbic acid (50, 100 and 200 μg/mL) were added to the liquid phase of a calcium phosphate cement (CPC). The cements were immersed in simulated body fluid (SBF) for different intervals and physical, physicochemical and mechanical properties of them were evaluated. The release of added ascorbic acid from CPCs into the SBF solution was also studied. From the results, both setting time and injectability of CPC decreased by adding ascorbic acid, however the compressive strength was sharply increased before soaking in SBF solution. But, the compressive strength values of all cements (with or without ascorbic acid) soaked in SBF solution for more than 7... 

    Recovery of low-rank matrices under affine constraints via a smoothed rank function

    , Article IEEE Transactions on Signal Processing ; Vol. 62, Issue. 4 , 15 February , 2014 , pp. 981-992 ; ISSN: 1053587X Malek-Mohammadi, M ; Babaie-Zadeh, M ; Amini, A ; Jutten, C ; Sharif University of Technology
    Abstract
    In this paper, the problem of matrix rank minimization under affine constraints is addressed. The state-of-the-art algorithms can recover matrices with a rank much less than what is sufficient for the uniqueness of the solution of this optimization problem. We propose an algorithm based on a smooth approximation of the rank function, which practically improves recovery limits on the rank of the solution. This approximation leads to a non-convex program; thus, to avoid getting trapped in local solutions, we use the following scheme. Initially, a rough approximation of the rank function subject to the affine constraints is optimized. As the algorithm proceeds, finer approximations of the rank... 

    Learning overcomplete dictionaries based on atom-by-atom updating

    , Article IEEE Transactions on Signal Processing ; Volume 62, Issue 4 , 15 February , 2014 , Pages 883-891 ; ISSN: 1053587X Sadeghi, M ; Babaie Zadeh, M ; Jutten, C ; Sharif University of Technology
    Abstract
    A dictionary learning algorithm learns a set of atoms from some training signals in such a way that each signal can be approximated as a linear combination of only a few atoms. Most dictionary learning algorithms use a two-stage iterative procedure. The first stage is to sparsely approximate the training signals over the current dictionary. The second stage is the update of the dictionary. In this paper we develop some atom-by-atom dictionary learning algorithms, which update the atoms sequentially. Specifically, we propose an efficient alternative to the well-known K-SVD algorithm, and show by various experiments that the proposed algorithm is much faster than K-SVD while its results are... 

    Mechanical performance of self-compacting concrete reinforced with steel fibers

    , Article Construction and Building Materials ; Volume 51 , 31 January , 2014 , Pages 179-186 ; ISSN: 09500618 Khaloo, A ; Raisi, E. M ; Hosseini, P ; Tahsiri, H ; Sharif University of Technology
    Abstract
    Self-compacting concrete (SCC) is a highly-workable concrete that without any vibration or impact and under its own weight fills the formwork, and it also passes easily through small spaces between rebars. In this paper, the effect of steel fibers on rheological properties, compressive strength, splitting tensile strength, flexural strength, and flexural toughness of SCC specimens, using four different steel fiber volume fractions (0.5%, 1%, 1.5%, and 2%), were investigated. Two mix designs with strengths of 40 MPa (medium strength) and 60 MPa (high strength) were considered. Rheological properties were determined through slump flow time and diameter, L-box, and V-funnel flow time tests.... 

    Flow stress analysis of ultrafine grained AA 1050 by plane strain compression test

    , Article Materials Science and Engineering A ; Vol. 593 , 2014 , pp. 136-144 ; ISSN: 09215093 Mohebbi, M. S ; Akbarzadeh, A ; Yoon, Y. O ; Kim, S. K ; Sharif University of Technology
    Abstract
    Plane strain compression (PSC) test was used to study the flow stress of ultrafine grained commercially pure aluminum at large strains. AA 1050 sheets were processed by various Accumulative Roll-Bonding (ARB) cycles up to 10 cycles as the initial specimens for the test. An approach was developed to measure the coefficient of friction and to suppress its effect on the results. It is shown that as a result of having an anisotropy parameter (R-value) of less than one, Von-Mises tensile strengths are significantly higher than PSC strengths. Comparing these strengths, the R-value as an average anisotropy parameter of rolling and transverse directions is estimated for the ARBed sheets, where it is... 

    Online undersampled dynamic MRI reconstruction using mutual information

    , Article 2014 21st Iranian Conference on Biomedical Engineering, ICBME 2014 ; 17 February , 2014 , Pages 241-245 ; ISBN: 9781479974177 Farzi, M ; Ghaffari, A ; Fatemizadeh, E ; Sharif University of Technology
    Abstract
    We propose an algorithm based on mutual information to address the problem of online reconstruction of dynamic MRI from partial k-space measurements. Most of previous compressed sensing (CS) based methods successfully leverage sparsity constraint for offline reconstruction of MR images, yet they are not used in online applications due to their complexities. In this paper, we formulate the reconstruction as a constraint optimization problem and try to maximize the mutual information between the current and the previous time frames. Conjugate gradient method is used to solve the optimization problem. Using Cartesian mask to undersample k-space measurements, the proposed method reduces... 

    Experimental investigation of characteristic curve for gas-lift pump

    , Article Journal of Petroleum Science and Engineering ; Volume 62, Issue 1 , 2014 , Pages 156-170 ; ISSN: 09204105 Hanafizadeh, P ; Raffiee, A. H ; Saidi, M. H ; Sharif University of Technology
    Abstract
    Using gas-liquid lifting pumps is a quite different technology for pumping two or three phase flows rather than other types of pumping systems. Therefore, finding performance characteristic chart for this type of pumping system seems to be necessary. In this type of pumping system, the liquid phase is pushed upward by the compressed air which has been injected in the bottom of upriser pipe of the pump. Therefore, compressed air acts as the driving force in gas lifting pumps instead of moving parts in ordinary pumps. It can be concluded that the definition of characteristic curve used for ordinary pump is not very appropriate for this type of pumping system. In this study, it has been... 

    Bounds on compressed voice channel capacity

    , Article IWCIT 2014 - Iran Workshop on Communication and Information Theory ; 7-8 May , 2014 , pp. 1-6 ; ISBN: 9781479948772 Boloursaz, M ; Kazemi, R ; Barazandeh, B ; Behnia, F ; Sharif University of Technology
    Abstract
    The voice channels present in cellular communication networks provide reliable, widespread and high priority communication mediums. Using these voice channels as a bearer for data transmission allows to deliver high Quality of Service data. But voice channels include vocoders that hinder the data flow by compressing the waveforms prior to transmission. Calculating vocoder channel capacity remains a challenging problem since no analytical model has been proposed for the vocoder channel so far. In this research, simplified models for the vocoder channel are proposed and bounds on vocoder channel capacity are derived based on them. In common cellular networks, the vocoder compression rate is... 

    Development of a new workflow for pseudo-component generation of reservoir fluid detailed analysis: A gas condensate case study

    , Article International Journal of Oil, Gas and Coal Technology ; Vol. 7, Issue. 3 , 2014 , pp. 275-297 ; ISSN: 1753-3317 Assareh, M ; Pishvaie, M. R ; Ghotbi, C ; Mittermeir, G. M ; Sharif University of Technology
    Abstract
    In this work, a new automatic workflow for accurate optimal pseudo-component generation from gas condensate mixtures with a large number of components is presented. This workflow has a good insight into thermo-physical and critical properties and introduces only a small amount of loss of information and EOS flexibility. In this regard, the fuzzy clustering is used to classify the components in the mixture based on the similarities in the critical properties. The mixing rules are then applied to find group properties. Two different approaches for components association in clustering process are investigated with several numbers of groups. The mathematical validity of the groups is controlled... 

    Characterization of dynamic recrystallization parameters for a low carbon resulfurized free - cutting steel

    , Article Materials and Design ; Vol. 53 , January , 2014 , pp. 910-914 ; ISSN: 02641275 Naghdy, S ; Akbarzadeh, A ; Sharif University of Technology
    Abstract
    The hot working behavior of a low carbon resulfurized free-cutting steel was studied by hot compression tests at temperature range of 1000-1200°C with strain rates of 0.001 to 1s-1. The conventional parameters such as activation energy of deformation and relationships between flow stress/strain and Zener-Hollomon parameter were determined. Both the critical stress and strain for initiation of dynamic recrystallization (DRX) were determined using: (1) strain hardening rate versus stress curve, (2) the natural logarithm of strain hardening rate versus strain curve, and (3) the constitutive equations. In summary, for low carbon resulfurized free - cutting steels, the activation energy of... 

    Enhancing glass ionomer cement features by using the HA/YSZ nanocomposite: A feed forward neural network modelling

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Vol. 29 , January , 2014 , pp. 317-327 ; ISSN: 17516161 Rajabzadeh, G ; Salehi, S ; Nemati, A ; Tavakoli, R ; Solati Hashjin, M ; Sharif University of Technology
    Abstract
    Despite brilliant properties of glass ionomer cement (GIC), its weak mechanical property poses an obstacle for its use in medical applications. The present research aims to formulate hydroxyapatite/yttria-stabilized zirconia (HA/YSZ) in the composition of GIC to enhance mechanical properties and to improve fluoride release of GIC. HA/YSZ was synthesized via a sol-gel method and characterized by applying X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photo-emission spectroscopy (XPS) and simultaneous thermal analysis (STA) along with transmission electron microscopy (TEM) methods. The synthesized nanocomposite was mixed with GIC at a fixed composition of 5....