Loading...
Search for: computational-mechanics
0.007 seconds
Total 27 records

    An enriched-finite element technique for numerical simulation of hydro-fracture evolution in naturally-layered formations

    , Article 6th ECCOMAS European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th ECCOMAS European Conference on Computational Fluid Dynamics, ECFD 2018, 11 June 2018 through 15 June 2018 ; 2020 , Pages 1685-1696 Vahab, M ; Akhondzadeh, S. H ; Khoei, A. R ; Khalili, N ; Sharif University of Technology
    International Centre for Numerical Methods in Engineering, CIMNE  2020
    Abstract
    In this paper, a computational model is developed for the simulation of hydro-fracture growth in naturally layered impervious media using the extended finite element method (X-FEM). The equilibrium equation of the bulk is solved in conjunction with the hydro-fracture inflow and continuity equations using the staggered Newton method. The hydro-fracture inflow is modeled by using the lubrication theory, where the permeability of the fracture is incorporated by taking advantage of the cubic law. The Eigen-function expansion method is utilized in order to develop enrichment functions suited for the asymptotic stress field in the vicinity of the singular points. An energy release rate-based... 

    Extrinsically enriched element free Galerkin method for heat and fluid flow in deformable porous media involving weak and strong discontinuities

    , Article Computers and Geotechnics ; Volume 103 , 2018 , Pages 179-192 ; 0266352X (ISSN) Iranmanesh, M. A ; Pak, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, an extrinsically enriched element free Galerkin (EFG) method is proposed for the thermo-hydro-mechanical simulation of saturated porous media. By taking advantage of partition of unity property of moving least square shape functions, weak discontinuities such as material interfaces are modeled using the Ridge enrichment function and impermeable strong discontinuities are simulated using the Heaviside function. Some guidelines are proposed for the selection of EFG numerical parameters to ensure the stability and accuracy of the results. Numerical examples are provided to illustrate the capability of the proposed approach for fully coupled THM analysis of discontinuous porous... 

    Non-isothermal simulation of the behavior of unsaturated soils using a novel EFG-based three dimensional model

    , Article Computers and Geotechnics ; Volume 99 , 2018 , Pages 93-103 ; 0266352X (ISSN) Iranmanesh, M. A ; Pak, A ; Samimi, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this paper, a three-dimensional simulation of fully coupled multiphase fluid flow and heat transfer through deforming porous media is presented in the context of EFG mesh-less method. Spatial discretization of the system of governing equations is performed using EFG and a fully implicit finite difference scheme is employed for temporal discretization. Penalty method is used for imposition of essential boundary conditions. The developed numerical tool is employed to simulate two problems of nuclear waste disposal and CO2 sequestration in deep underground strata. The obtained results demonstrate the capability and robustness of the developed EFG code. © 2018 Elsevier Ltd  

    3D neutron diffusion computational code based on GFEM with unstructured tetrahedron elements: A comparative study for linear and quadratic approximations

    , Article Progress in Nuclear Energy ; Volume 92 , 2016 , Pages 119-132 ; 01491970 (ISSN) Hosseini, S. A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In the present study, the comparison between the results obtained from the linear and quadratic approximations of the Galerkin Finite Element Method (GFEM) for neutronic reactor core calculation was reported. The sensitivity analysis of the calculated neutron multiplication factor, neutron flux and power distributions in the reactor core vs. the number of the unstructured tetrahedron elements and order of the considered shape function was performed. The cost of the performed calculation using linear and quadratic approximation was compared through the calculation of the FOM. The neutronic core calculation was performed for both rectangular and hexagonal geometries. Both the criticality and... 

    Mixing enhancement of two gases in a microchannel using DSMC

    , Article Applied Mechanics and Materials, Dubai ; Volume 307 , 2013 , Pages 166-169 ; 16609336 (ISSN) ; 9783037856598 (ISBN) Darbandi, M ; Lakzian, E ; Sharif University of Technology
    2013
    Abstract
    In high Knudsen number flow regimes microgas flow analysis may not be performed accurately using the classical CFD methods. Alternatively, the gas flow through micro-geometries can be investigated reliably using the direct simulation Monte Carlo (DSMC) method. Our concern in this paper is to use DSMC to study the mixing of two gases in entering simultaneously into a microchannel. The mixing process is assumed to be complete when the mass composition of each species deviates by no more than ±1% from its equilibrium composition. To enhance the mixing process, we focus on the effects of inlet-outlet pressure difference and the pressure ratios of the two incoming CO and N2 streams on the mixing... 

    CFD simulation of natural draught cooling tower wind-covering

    , Article Applied Mechanics and Materials, Dubai ; Volume 307 , 2013 , Pages 279-284 ; 16609336 (ISSN) ; 9783037856598 (ISBN) Darbandi, M ; Salemkar, H ; Behrouzifar, A ; Abrar, B ; Sharif University of Technology
    2013
    Abstract
    Past experiences have shown that a local wind can considerably affect the performances of powerplant cooling towers and factory chimneys. In thermal powerplants, the performance of Rankin cycles would reduce if the temperature of its condenser increases. This issue is very important to powerplants located in countries with strong local winds. To remedy the malperformance of a natural cooling tower in windy conditions, it is required to understand the physics of flow around cooling towers more clearly. One adverse physics is known as the wind covering problem which can drastically affect the natural draught through a cooling tower in windy conditions. In this paper, we focus on wind-covering... 

    Three-dimensional simulation of fully coupled hydro-mechanical behavior of saturated porous media using Element Free Galerkin (EFG) method

    , Article Computers and Geotechnics ; Volume 46 , 2012 , Pages 75-83 ; 0266352X (ISSN) Samimi, S ; Pak, A ; Sharif University of Technology
    2012
    Abstract
    Meshless methods are a relatively new type of numerical methods that have attracted the attention of many researchers over the past years. So far, a number of meshless methods have been developed and applied to solve problems in various fields of engineering, including solid mechanics and geotechnical problems. The Element-Free Galerkin (EFG) method is adopted in this study for solving the governing partial differential equations of equilibrium and continuity of pore fluid flow for numerical simulation of coupled hydro-mechanical problems. For this purpose, the weak form of the governing equations is derived by applying the weighted residual method and Galerkin technique. The penalty method... 

    Investigation of cutting model in machining of Al/SiC p metal matrix composite

    , Article Applied Mechanics and Materials, 18 November 2011 through 20 November 2011, Shenzhen ; Volume 117-119 , 2012 , Pages 1465-1470 ; 16609336 (ISSN) ; 9783037852804 (ISBN) Nikouei, S. M ; Kouchakzadeh, M. A ; Yousefi, R ; Kadivar, M. A ; Sharif University of Technology
    2012
    Abstract
    Prediction of shear plane angle is a way for prediction of the mechanism of chip formation, machining forces and so on. In this study, Merchant and Lee-Shaffer theories are used to predict the shear plane angles and cutting forces in machining of Al/SiC p MMC. The experimental cutting forces are compared with the calculated cutting force based on shear plane angles extracted from Merchant and Lee-Shaffer theories. The variation of these cutting forces with cutting speed, feed rate and depth of cut has been discussed. The results show that Merchant theory may be used as a good method for prediction of chip formation in machining of Al/SiC p MMC  

    Some numerical issues using element-free galerkin mesh-less method for coupled hydro-mechanical problems

    , Article International Journal for Numerical and Analytical Methods in Geomechanics ; Volume 33, Issue 7 , 2009 , Pages 915-938 ; 03639061 (ISSN) Oliaei, M. N ; Soga, K ; Pak, A ; Sharif University of Technology
    2009
    Abstract
    A new formulation of the element-free Galerkin (EFG) method is developed for solving coupled hydromechanical problems. The numerical approach is based on solving the two governing partial differential equations of equilibrium and continuity of pore water simultaneously. Spatial variables in the weak form, i.e. displacement increment and pore water pressure increment, are discretized using the same EFG shape functions. An incremental constrained Galerkin weak form is used to create the discrete system equations and a fully implicit scheme is used for discretization in the time domain. Implementation of essential boundary conditions is based on a penalty method. Numerical stability of the... 

    Generalized nonlinear 3D Euler-Bernoulli beam theory

    , Article Iranian Journal of Science and Technology, Transaction B: Engineering ; Volume 32, Issue 1 , 2008 , Pages 1-12 ; 10286284 (ISSN) Zohoor, H ; Khorsandijou, S. M ; Sharif University of Technology
    2008
    Abstract
    The issue of the new elastic terms discovered in the nonlinear dynamic model of an enhanced nonlinear 3D Euler-Bernoulli beam is discussed. While the elastic orientation is negligible, the nonlinear dynamic model governing tension-compression, torsion and two spatial bendings is presented. Considering this model, some new elastic terms can be identified in the variation of elastic potential energy in each bending motion equation, and in each transverse shear force. Due to the new terms, each term of a bending equation and a transverse shear force, finds a counterpart in the other bending equation and transverse shear force, but the equations remain asymmetric. The new terms have arisen,... 

    Experimental and computational investigation into the use of co-flow fluidic thrust vectoring on a small gas turbine

    , Article Aeronautical Journal ; Volume 112, Issue 1127 , 2008 , Pages 17-25 ; 00019240 (ISSN) Banazadeh, A ; Saghafi, F ; Ghoreyshi, M ; Pilidis, P ; Sharif University of Technology
    Royal Aeronautical Society  2008
    Abstract
    This paper presents the application of a relatively new technique of fluidic thrust-vectoring (FTV), named Co-flow, for a small gas-turbines. The performance is obtained via experiment and computational fluid dynamics (CFD). The effects of a few selected parameters including the engine throttle setting, the secondary air mass-flow rate and the secondary slot height upon thrust-vectoring performance are provided. Thrust vectoring performance is characterised by the ability of the system to deflect the engine thrust with respect to the delivered secondary air mass-flow rate. The experimental study was conducted under static conditions in an outdoor environment at Cranfield University workshop... 

    Applying simulated annealing to cellular manufacturing system design

    , Article International Journal of Advanced Manufacturing Technology ; Volume 32, Issue 5-6 , 2007 , Pages 531-536 ; 02683768 (ISSN) Arkat, J ; Saidi, M ; Abbasi, B ; Sharif University of Technology
    2007
    Abstract
    Cell formation and cellular layout design are the two main steps in designing a cellular manufacturing system (CMS). In this paper, we will present an integrated methodology based on a new concept of similarity coefficients and the use of simulated annealing (SA) as an optimization tool. In comparison with the previous works, the proposed methodology takes into account relevant production data, such as alternative process routings and the production volumes of parts. The SA-based optimization tool is parallel in nature and, hence, can reduce the computation time significantly, so it is capable of handling large-scale problems. Finally, the SA-based procedure is compared with a genetic... 

    A new approach to C2 continuous piecewise bicubic representation of the articular surfaces of diarthrodial joints

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 220, Issue 4 , 2006 , Pages 553-563 ; 09544119 (ISSN) Jafari, A ; Farahmand, F ; Meghdari, A ; Golestanha, A. S ; Sharif University of Technology
    2006
    Abstract
    Based on the force-deflection equation for a beam subjected to lateral point loads, a C2 continuous piecewise bicubic mathematical representation was proposed to model complicated geometrical surfaces, e.g. the articular surfaces of human joints. The method was then extended so that it could be used for mathematical modelling of incomplete nets of data points, as well as smoothing of noisy and/or filtering of erroneous data points. Mathematical techniques were also developed to calculate the required unknown parameters explicitly, with no need to solve the system of equations simultaneously. The performance of the proposed method was evaluated on a number of surface modelling problems,... 

    Planar diffraction analysis of homogeneous and longitudinally inhomogeneous gratings based on legendre expansion of electromagnetic fields

    , Article IEEE Transactions on Antennas and Propagation ; Volume 54, Issue 12 , 2006 , Pages 3686-3694 ; 0018926X (ISSN) Chamanzar, M. R ; Mehrany, K ; Rashidian, B ; Sharif University of Technology
    2006
    Abstract
    Planar grating diffraction analysis based on Legendre expansion of electromagnetic fields is reported. In contrast to conventional RCWA in which the solution is obtained using state variables representation of the coupled wave amplitudes; here, the solution is expanded in terms of Legendre polynomials. This approach, without facing the problem of numerical instability and inevitable round off errors, yields well-behaved algebraic equations for deriving diffraction efficiencies, and can be employed for analysis of different types of gratings. Thanks to the recursive properties of Legendre polynomials, for longitudinally inhomogeneous gratings, wherein differential equations with non-constant... 

    Hierarchical Multi-Scale Modeling of Large Plastic Deformation with Application in Powder Compaction

    , Ph.D. Dissertation Sharif University of Technology Rezaei Sameti, Amir (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    The hierarchical multi-scale approach is one of the most powerful techniques that takes the advantage of different scales and succeeds the limitations of each method in a way that the large systems in coarse-scale can be simulated with atomic precision. In this thesis, the hierarchical atomistic-continuum multi-scale method is developed for modeling the phenomena with non-homogenous deformation, large deformation and plastic behavior. In this regard at first, an atomistic-based higher-order continuum model is formulated in the framework of nonlinear finite element method to present the geometrically nonlinear behavior of nano-structures. The efficiency of higher-order Cauchy-Born hypothesis... 

    Design, modeling and optimization of a novel two DOF polymeric electro-thermal micro-actuator

    , Article Applied Mechanics and Materials ; Vol. 307 , 2013 , pp. 112-116 ; ISSN: 16609336 ; ISBN: 9783037856598 Sheikhbahaie, R ; Alasty, A ; Salarieh, H ; Sharif University of Technology
    Abstract
    In this paper, design, simulation and optimization of a novel electrothermally-activated polymeric microactuator capable of generating combination of bidirectional lateral and rotational motions are presented. The composite structure of this actuator is consisted of a symmetric meandered shape silicon skeleton, a SU8 thermal expandable polymer and a thin film chrome layer heater. This actuator is controlled by applying appropriate voltages on its four terminals. With the purpose of dimension optimization, a numerical parametric study is executed. The modeled actuator which is 1560 ?m long, 156 ?m wide and 30 ?m thick, demonstrates a remarkable lateral displacement of 23 ?m at power... 

    Numerical studies on the performance of Saccardo ventilation system in emergency fire scenarios

    , Article Applied Mechanics and Materials ; Vol. 527 , 2014 , Pages 146-151 ; ISSN: 16609336 Ganjiazad, R ; Kazemipour, A ; Afshin, H ; Farhanieh, B ; Sharif University of Technology
    Abstract
    In this study, the influence of volumetric flow rate and inclination angle of air jet is evaluated on the performance of a Saccardo ventilation system in a straight rectangular tunnel in case of fire. Simultaneous effects of volumetric flow rate and inclination angle of jet exiting the Saccardo nozzle on the behavior of smoke plume is considered by studying the structure of velocity profile before the fire source. It is found that this factor has a remarkable influence on the behavior of smoke plume and therefore, on the temperatures experienced near the fire. Besides, the influence of tunnel slope on the performance of the Saccardo system to sweep the plume is investigated. It is shown that... 

    An investigation on the dynamic response of the shaking table steel deck using finite element

    , Article 11th World Congress on Computational Mechanics, WCCM 2014, 5th European Conference on Computational Mechanics, ECCM 2014 and 6th European Conference on Computational Fluid Dynamics, ECFD 2014 ; 2014 , pp. 1330-1340 ; ISBN: 9788494284472 Moghaddam, H ; Farzanian, K ; Taheri, E ; Sharif University of Technology
    Abstract
    This paper presents the results of an analytical study on the dynamic characteristics of the Shaking Table facilities at Sharif University. This 3 degree of freedom shaking table is driven by 3 servo-control hydraulic actuators, and consists of a 12 ton, 4m×4m×0.6m steel deck. The main objective of this investigation is to identify the degree of flexibility of the deck, and its adverse effects in causing errors in the simulation of seismic effects on different structural specimens. Many frame specimens of different weights and configurations are subjected to seismic motions, and their responses are calculated using FE models. Some of these models were designed to account for eccentric... 

    EFG mesh-less method for coupled hydro-mechanical analysis of unsaturated porous media

    , Article Unsaturated Soils: Research and Applications - Proceedings of the 6th International Conference on Unsaturated Soils, UNSAT 2014 ; Vol. 1, issue , July , 2014 , p. 581-587 ; 978-1-138-00150-3 Samimi, S ; Pak, A ; Sharif University of Technology
    Abstract
    Numerical modeling of the fully coupled phenomena of solid deformation-fluid flow in partially saturated porous media is of great interest in many branches of science and engineering. In this study, a new formulation based on one of the famous mesh-less methods, called Element-Free Galerkin (EFG), is developed to simulate the water and air movement through variably saturated soils. For this purpose, the governing partial differential equations including the equilibrium equation and mass conservation laws for each fluid phase are discretized in space using the same EFG shape functions. To enforce the essential boundary conditions, penalty method is employed. Temporal discretization is... 

    A novel three-dimensional element free Galerkin (EFG) code for simulating two-phase fluid flow in porous materials

    , Article Engineering Analysis with Boundary Elements ; Vol. 39, issue. 1 , 2014 , pp. 53-63 ; ISSN: 09557997 Samimi, S ; Pak, A ; Sharif University of Technology
    Abstract
    In the past few decades, numerical simulation of multiphase flow systems has received increasing attention because of its importance in various fields of science and engineering. In this paper, a three-dimensional numerical model is developed for the analysis of simultaneous flow of two fluids through porous media. The numerical approach is fairly new based on the element-free Galerkin (EFG) method. The EFG is a type of mesh-less method which has rarely been used in the field of flow in porous media. The weak forms of the governing partial differential equations are derived by applying the weighted residual method and Galerkin technique. The penalty method is utilized for imposition of the...