Loading...
Search for: computational-requirements
0.014 seconds

    A method for reducing the complexity, and increasing the accuracy of field emission electron gun simulations

    , Article Vacuum ; Volume 95 , 2013 , Pages 50-65 ; 0042207X (ISSN) Yasrebi, N ; Rashidian, B ; Sharif University of Technology
    2013
    Abstract
    Problems regarding simulation of field emitter array (FEA) electron guns are discussed. A simple method is proposed to significantly reduce computational requirements such as computation power, system memory, and time of FEA electron gun simulation and modeling. The method can be applied to any numerical solver regardless of its meshing technique. In order to extract field emission parameter from any experimental cathode I-V curve, a partly numerical algorithm, which uses the presented truncation method at the heart of its solver, is proposed. The proposed method and algorithm are applied to a number of examples, including a double-gated FEA problem, and its effectiveness in terms of error... 

    Modeling, simulation, and optimal initiation planning for needle insertion into the liver

    , Article Journal of Biomechanical Engineering ; Volume 132, Issue 4 , 2010 ; 01480731 (ISSN) Sharifi Sedeh, R ; Ahmadian, M. T ; Janabi Sharifi, F ; Sharif University of Technology
    2010
    Abstract
    Needle insertion simulation and planning systems (SPSs) will play an important role in diminishing inappropriate insertions into soft tissues and resultant complications. Difficulties in SPS development are due in large part to the computational requirements of the extensive calculations in finite element (FE) models of tissue. For clinical feasibility, the computational speed of SPSs must be improved. At the same time, a realistic model of tissue properties that reflects large and velocity-dependent deformations must be employed. The purpose of this study is to address the aforementioned difficulties by presenting a cost-effective SPS platform for needle insertions into the liver. The study... 

    A mixture of modular structures to describe human motor planning level: A new perspective based on motor decomposition

    , Article 2011 18th Iranian Conference of Biomedical Engineering, ICBME 2011 ; 2011 , Pages 199-204 ; 9781467310055 (ISBN) Sadeghi, M ; Andani, M. E ; Fattah, A ; Parnianpour, M ; Sharif University of Technology
    Abstract
    A modular hierarchical structure is developed to describe human movement planning level. The modular feature of the proposed model enables it to generalize planning a task. The movements are planned based on decomposing a task into its corresponding subtasks (motion phases). There is a module responsible for one condition. The final plan is constructed using soft computing of the plans proposed by different modules. Each module estimates the kinematics of the joints at the end of each subtask; we call them kinematic estimator modules (KEMs). A timing module estimates the duration of motion and a gating module determines the responsibility of each KEM under different conditions. To evaluate...