Loading...
Search for: concentration
0.019 seconds
Total 1259 records

    Fracture toughness of a hybrid-rubber-modified epoxy. I. Synergistic toughening

    , Article Journal of Applied Polymer Science ; Volume 125, Issue 3 , January , 2012 , Pages 2467-2475 ; 00218995 (ISSN) Abadyan, M ; Bagheri, R ; Kouchakzadeh, M. A ; Sharif University of Technology
    Wiley  2012
    Abstract
    The fracture behavior of a hybrid-rubber-modified epoxy system was investigated. The modified epoxy included amine-terminated butadiene acrylonitrile (ATBN) rubber and recycled tire particles as fine and coarse modifiers, respectively. The results of the fracture toughness (K IC) measurement of the blends revealed synergistic toughening in the hybrid system when 7.5-phr small particles (ATBN) and 2.5-phr large particles (recycled tire) were incorporated. Transmission optical micrographs showed different toughening mechanisms for the blends; fine ATBN particles increased the toughness by increasing the size of the damage zone and respective plastic deformation in the vicinity of the crack... 

    Exploring the tensile strain energy absorption of hybrid modified epoxies containing soft particles

    , Article Materials and Design ; Volume 32, Issue 5 , 2011 , Pages 2900-2908 ; 02641275 (ISSN) Abadyan, M ; Bagheri, R ; Kouchakzadeh, M. A ; Hosseini Kordkheili, S. A ; Sharif University of Technology
    2011
    Abstract
    In this paper, tensile strain energy absorption of two different hybrid modified epoxies has been systematically investigated. In one system, epoxy has been modified by amine-terminated butadiene acrylonitrile (ATBN) and hollow glass spheres as fine and coarse modifiers, respectively. The other hybrid epoxy has been modified by the combination of ATBN and recycled Tire particles. The results of fracture toughness measurement of blends revealed synergistic toughening for both hybrid systems in some formulations. However, no evidence of synergism is observed in tensile test of hybrid samples. Scanning electron microscope (SEM), transmission optical microscope (TOM) and finite element (FEM)... 

    Fabrication of carboxymethyl chitosan/poly(ε-caprolactone)/doxorubicin/nickel ferrite core-shell fibers for controlled release of doxorubicin against breast cancer

    , Article Carbohydrate Polymers ; Volume 257 , 2021 ; 01448617 (ISSN) Abasalta, M ; Asefnejad, A ; Khorasani, M. T ; Saadatabadi, A. R ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The coaxial electrospinning for producing core-shell nanofibers due to control the release profile of drug by the shell layer has been developed. N-carboxymethyl chitosan (CMC)-polyvinyl alcohol (core)/poly(ε-caprolactone) (PCL) (shell) nanofibers were produced via coaxial electrospinning. Doxorubicin (DOX) and nickel ferrite nanoparticles were incorporated into the nanofibers for controlled release of DOX against MCF-7 breast cancer. The minimum CMC/PCL fiber diameter was found to be 300 nm by optimizing of three variables including voltage to distance ratio (1.5–2.5 kV/cm), CMC concentration (4−6 wt.%) and PCL concentration (8−12 wt.%). The synthesized core-shell fibers were characterized... 

    Fabrication of carboxymethyl chitosan/poly(ε-caprolactone)/doxorubicin/nickel ferrite core-shell fibers for controlled release of doxorubicin against breast cancer

    , Article Carbohydrate Polymers ; Volume 257 , 2021 ; 01448617 (ISSN) Abasalta, M ; Asefnejad, A ; Khorasani, M. T ; Saadatabadi, A. R ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The coaxial electrospinning for producing core-shell nanofibers due to control the release profile of drug by the shell layer has been developed. N-carboxymethyl chitosan (CMC)-polyvinyl alcohol (core)/poly(ε-caprolactone) (PCL) (shell) nanofibers were produced via coaxial electrospinning. Doxorubicin (DOX) and nickel ferrite nanoparticles were incorporated into the nanofibers for controlled release of DOX against MCF-7 breast cancer. The minimum CMC/PCL fiber diameter was found to be 300 nm by optimizing of three variables including voltage to distance ratio (1.5–2.5 kV/cm), CMC concentration (4−6 wt.%) and PCL concentration (8−12 wt.%). The synthesized core-shell fibers were characterized... 

    Investigation of iron ore particle size and shape on green pellet quality

    , Article Canadian Metallurgical Quarterly ; Volume 59, Issue 2 , 2020 , Pages 242-250 Abazarpoor, A ; Halali, M ; Hejazi, R ; Saghaeian, M ; Sheikh Zadeh, V ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    Particle size and shape of iron ore concentrate are effective parameters in the production of quality green pellets. In this research, the effect of particle morphology on green pellet quality was studied. It was concluded that pellet quality improved with increasing specific surface area. Drop number and green compression strength of pellets ground by HPGR were found to be superior over those ground in the ball mill. The chief reasons were related to particle shape and the fraction of fine particles. Smaller particle size results in a higher order of bonding between particles and therefore the formation of a stronger system. Also, the rougher and less circular shape of particles resulted in... 

    Adaptive neural fuzzy inference (ANFI) modeling technique for production of marine biosurfactant

    , Article Proceedings of the ASME Design Engineering Technical Conference ; Volume 2, Issue PARTS A AND B , 2012 , Pages 47-52 ; 9780791845011 (ISBN) Abbasi, A. A ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    In this study; a Sugeno type ANFI model which describes the relationship between the bio surfactant concentration as a model output and the critical medium components as its inputs has been constructed. The critical medium components are glucose, urea,SrCl2 and MgSo4 .The experimental data for training and testing capability of the model obtained by a statistical experimental design which have been captured from literatures. Six generalized bell shaped membership function have been selected for each of input variables and based on the training data ANFI model has been trained using the hybrid learning algorithm. The yielded biosurfactant concentration values from the model prediction shows... 

    Tracer transport in naturally fractured reservoirs: Analytical solutions for a system of parallel fractures

    , Article International Journal of Heat and Mass Transfer ; Volume 103 , 2016 , Pages 627-634 ; 00179310 (ISSN) Abbasi, M ; Hossieni, M ; Izadmehr, M ; Sharifi, M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    In naturally fractured reservoirs, modeling of mass transfer between matrix blocks and fractures is an important subject during gas injection or contaminant transport. This study focuses on developing an exact analytical solution to transient tracer transport problem along a discrete fracture in a porous rock matrix. Using Gauss-Legendre quadrature, an expression was obtained in the form of a double integral which is considered as the general transient solution. This solution has the ability to account the following phenomena: advective transport in fractures and molecular diffusion from the fracture to the matrix block. Certain assumptions are made which allow the problem to be formulated... 

    Effects of Brownian motions and thermophoresis diffusions on the hematocrit and LDL concentration/diameter of pulsatile non-Newtonian blood in abdominal aortic aneurysm

    , Article Journal of Non-Newtonian Fluid Mechanics ; Volume 294 , 2021 ; 03770257 (ISSN) Abbasi, M ; Esfahani, A. N ; Golab, E ; Golestanian, O ; Ashouri, N ; Sajadi, S. M ; Ghaemi, F ; Baleanu, D ; Karimipour, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    LDL concentration is believed to be responsible for plaque formation that leads to atherosclerotic cardiovascular disease. We conducted this study to investigate the effects of hematocrits and LDL diameters on LDL concentration on the wall of an abdominal aortic aneurysm (AAA). The blood flow was considered to be a pulsatile and non-Newtonian flow whose viscosity was a function of hematocrits and strain rate. Lumen, Brownian, and thermophoresis diffusions were analyzed in LDL concentration. The results demonstrated that adding thermophoresis diffusion increases LDL concentration. Moreover, among three types of LDLs, including small LDLs, intermediate LDLs, and large LDLs, small LDLs were the... 

    Effects of Brownian motions and thermophoresis diffusions on the hematocrit and LDL concentration/diameter of pulsatile non-Newtonian blood in abdominal aortic aneurysm

    , Article Journal of Non-Newtonian Fluid Mechanics ; Volume 294 , 2021 ; 03770257 (ISSN) Abbasi, M ; Esfahani, A. N ; Golab, E ; Golestanian, O ; Ashouri, N ; Sajadi, S. M ; Ghaemi, F ; Baleanu, D ; Karimipour, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    LDL concentration is believed to be responsible for plaque formation that leads to atherosclerotic cardiovascular disease. We conducted this study to investigate the effects of hematocrits and LDL diameters on LDL concentration on the wall of an abdominal aortic aneurysm (AAA). The blood flow was considered to be a pulsatile and non-Newtonian flow whose viscosity was a function of hematocrits and strain rate. Lumen, Brownian, and thermophoresis diffusions were analyzed in LDL concentration. The results demonstrated that adding thermophoresis diffusion increases LDL concentration. Moreover, among three types of LDLs, including small LDLs, intermediate LDLs, and large LDLs, small LDLs were the... 

    Effect of electrolyte concentration on microstructure and properties of micro arc oxidized hydroxyapatite/titania nanostructured composite

    , Article Materials Science and Engineering C ; Volume 33, Issue 5 , 2013 , Pages 2555-2561 ; 09284931 (ISSN) Abbasi, S ; Golestani Fard, F ; Mirhosseini, S. M. M ; Ziaee, A ; Mehrjoo, M ; Sharif University of Technology
    2013
    Abstract
    Micro arc oxidation was employed to grow TiO2/hydroxyapatite composite layer on titanium substrate. The correlation between electrolyte concentration, diameter and density of the pores in fabricated layers was investigated. Therefore, the effect of electrolyte concentration on composition and morphology of grown layers was studied using SEM, EDX, XRD and XPS techniques. Samples were coated in electrolytes containing 5, 10 and 15 g/l calcium acetate and 1, 3 and 5 g/l β-glycerophosphate, at optimized voltage for 3 min. Pore size variations obey a similar pattern by the addition of both calcium acetate and β-glycerophosphatein various concentrations based on SEM observations. However,... 

    MAO-derived hydroxyapatite/TiO 2 nanostructured multi-layer coatings on titanium substrate

    , Article Applied Surface Science ; Volume 261 , 2012 , Pages 37-42 ; 01694332 (ISSN) Abbasi, S ; Golestani Fard, F ; Rezaie, H. R ; Mirhosseini, S. M. M ; Sharif University of Technology
    2012
    Abstract
    In this study, titanium substrates which previously oxidized through Micro arc oxidation method, was coated by Hydroxyapatite (HAp) coating once more by means of the same method. Morphology, topography and chemical properties as well as phase composition and thickness of layers were studied to reveal the effect of the electrolyte concentration on coating features. According to results, the obtained coatings are consisted of HAp and titania as the major phases along with minor amounts of calcium titanate and α-tri calcium phosphate. Ca and P are present on surface of obtained layers as well as predictable Ti and O based on the XPS results. Thickness profile of coatings figured out that by... 

    MAO-derived hydroxyapatite-TiO 2 nanostructured bio-ceramic films on titanium

    , Article Materials Research Bulletin ; Volume 47, Issue 11 , 2012 , Pages 3407-3412 ; 00255408 (ISSN) Abbasi, S ; Golestani Fard, F ; Rezaie, H. R ; Mirhosseini, S. M. M ; Ziaee, A ; Sharif University of Technology
    2012
    Abstract
    Micro Arc Oxidation (MAO) process was utilized to fabricate nano bioceramic TiO 2-hydroxyapatite coatings on titanium substrates. Samples were produced in electrolytes contained 1 g/l β-glycerophosphate and 5, 10 and 15 g/l calcium acetate for 3, 6 and 10 min at 350 V. The techniques including XRD, XPS, SEM, FESEM and EDX were employed to study the effect of processing parameters. Hydroxyapatite, anatase, α-tri calcium phosphate and calcium titanate phases as well as 30-60 nm-size crystals were detected in the coating layer. It was also observed that the pore volume would increase by increasing the electrolyte concentration. The growth time was also found to influence the total pore volume.... 

    Fast and accurate multiscale reduced-order model for prediction of multibreath washout curves of human respiratory system

    , Article Industrial and Engineering Chemistry Research ; Volume 60, Issue 10 , 2021 , Pages 4131-4141 ; 08885885 (ISSN) Abbasi, Z ; Boozarjomehry, R. B ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    The curve of exhaled inert gas concentration against exhaled volume is called gas washout curve. The slope at the end part of gas washout curve (Sn) is a measure of structural abnormalities. Sn depends on the spatial concentration distribution and dynamic of gas washout, which depends on several mechanisms including asymmetry of airways, nonhomogeneous ventilation, sequential emptying, and gas exchange with blood. Due to a large number of airways in human lungs, using simplified models is inevitable. On the other hand, these simplified models cannot capture some of the mentioned mechanisms and subsequently were not able to predict experimental trend of change in Sn with breath number in... 

    Fast and accurate multiscale reduced-order model for prediction of multibreath washout curves of human respiratory system

    , Article Industrial and Engineering Chemistry Research ; Volume 60, Issue 10 , 2021 , Pages 4131-4141 ; 08885885 (ISSN) Abbasi, Z ; Boozarjomehry, R. B ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    The curve of exhaled inert gas concentration against exhaled volume is called gas washout curve. The slope at the end part of gas washout curve (Sn) is a measure of structural abnormalities. Sn depends on the spatial concentration distribution and dynamic of gas washout, which depends on several mechanisms including asymmetry of airways, nonhomogeneous ventilation, sequential emptying, and gas exchange with blood. Due to a large number of airways in human lungs, using simplified models is inevitable. On the other hand, these simplified models cannot capture some of the mentioned mechanisms and subsequently were not able to predict experimental trend of change in Sn with breath number in... 

    Multi-site statistical downscaling of precipitation using generalized hierarchical linear models: a case study of the imperilled Lake Urmia basin

    , Article Hydrological Sciences Journal ; Volume 65, Issue 14 , 2020 , Pages 2466-2481 Abbasian, M. S ; Abrishamchi, A ; Najafi, M. R ; Moghim, S ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    A downscaling model capable of explaining the temporal and spatial variability of regional hydroclimatic variables is essential for reliable climate change studies and impact assessments. This study proposes a novel statistical approach based on generalized hierarchical linear model (GHLM) to downscale precipitation from the outputs of general circulation models (GCMs) at multiple sites. GHLM partitions the total variance of precipitation into within- and between-site variability allowing for transferring information between sites to develop a regional downscaling model. The methodology is demonstrated by downscaling precipitation using the outputs of eight GCMs in Lake Urmia basin in... 

    Effect of formulation factors on the bioactivity of glucose oxidase encapsulated chitosan-alginate microspheres: In vitro investigation and mathematical model prediction

    , Article Chemical Engineering Science ; Volume 125 , March , 2015 , Pages 4-12 ; 00092509 (ISSN) Abdekhodaie, M. J ; Cheng, J ; Wu, X. Y ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Higher reactive oxygen species (ROS) levels in cancer cells than normal cells have long been recognized, which makes cancer cells more susceptible to excess ROS. Thus oxidation (also called pro-oxidant) therapy has been explored as new cancer therapy regimens. To produce additional ROS, e.g. H2O2 in situ within tumor, we encapsulated glucose oxidase in chitosan-coated alginate-calcium microspheres (GOX-MS) for locoregional treatment and demonstrated its efficacy against cancer cells in vitro and in vivo. Owing to the complex biological functions of ROS, the production rate and amount of H2O2 are critical to achieve therapeutic benefits without causing normal tissue toxicity. This work was... 

    Modeling of a glucose sensitive composite membrane for closed-loop insulin delivery

    , Article Journal of Membrane Science ; Volume 335, Issue 1-2 , 2009 , Pages 21-31 ; 03767388 (ISSN) Abdekhodaie, M. J ; Wu, X. Y ; Sharif University of Technology
    2009
    Abstract
    A theoretical model was developed to describe a dynamic process involving an enzymatic reaction and diffusion of reactants and product inside glucose sensitive composite membrane. The composite membrane consisted of nanoparticles of a weakly acidic polymer, glucose oxidase and catalase embedded in a hydrophobic polymer. Time- and position-dependent diffusivity of involved species was considered in the model. Donnan equilibrium was used to find concentrations of buffer ions inside the membrane. The profiles of pH, species concentrations, volume fraction of swollen gel, polymer and water-filled space, as well as solute diffusivity inside the membrane were predicted by the model as a function... 

    Drug release from ion-exchange microspheres: Mathematical modeling and experimental verification

    , Article Biomaterials ; Volume 29, Issue 11 , 2008 , Pages 1654-1663 ; 01429612 (ISSN) Abdekhodaie, M. J ; Wu, X. Y ; Sharif University of Technology
    2008
    Abstract
    This paper presents for the first time a mathematical model for a mechanism of controlled drug release involving both ion exchange and transient counter diffusion of a drug and counterions. Numerical analysis was conducted to study the effect of different factors on drug release kinetics including environmental condition, material properties, and design parameters. The concentration profiles of counterions and drug species, the moving front of ion exchange, and three distinct regions inside a microsphere, namely unextracted region, ion-exchange region and drug diffusion region, were revealed by model prediction. The numerical results indicated that the rate of drug release increased with an... 

    Drug loading onto ion-exchange microspheres: Modeling study and experimental verification

    , Article Biomaterials ; Volume 27, Issue 19 , 2006 , Pages 3652-3662 ; 01429612 (ISSN) Abdekhodaie, M. J ; Wu, X. Y ; Sharif University of Technology
    2006
    Abstract
    A new mathematical model was developed and an exact analytical solution without approximations of previous work was derived for the description of the kinetics and equilibrium characteristics of drug loading from a finite external solution onto ion-exchange microspheres. The influence of important parameters pertinent to material properties and loading conditions on the kinetics, efficiency, and equilibrium of drug loading was analyzed using the developed model and equations. The numerical results showed that the rate of drug loading increased with increasing initial drug concentration in the solution or with the relative volume of the external solution and the microsphere. The maximum... 

    Modeling of a cationic glucose-sensitive membrane with consideration of oxygen limitation

    , Article Journal of Membrane Science ; Volume 254, Issue 1-2 , 2005 , Pages 119-127 ; 03767388 (ISSN) Abdekhodaie, M. J ; Wu, X. Y ; Sharif University of Technology
    2005
    Abstract
    A theoretical model concerning simultaneous diffusion and reaction was developed to describe the steady state behavior of a cationic glucose-sensitive membrane with consideration of oxygen limitation and swelling-dependent diffusivities of involved species inside the membrane. Donnan equilibrium was used to find concentrations of buffer ions inside the membrane. The profiles of species concentrations, pH, polymer volume fraction and solute diffusivity inside the membrane were predicted by the model in response to step changes of glucose concentration in the external solution. The influence of various factors on the responsiveness of the membrane was analyzed using the model. The results...