Loading...
Search for: conductive-atomic-force-microscopy
0.011 seconds

    Copper oxide nanoflakes as highly sensitive and fast response self-sterilizing biosensors

    , Article Journal of Materials Chemistry ; Volume 21, Issue 34 , Jul , 2011 , Pages 12935-12940 ; 09599428 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2011
    Abstract
    Vertical copper oxide nanoflakes were synthesized on a Cu foil through oxidation in alkaline conditions. X-ray photoelectron spectroscopy showed that after exposing the nanoflakes to an Escherichia coli bacterial suspension, the outermost surface of the nanoflakes was chemically reduced through the glycolysis process of the bacteria. Current-voltage (I-V) characteristics of the nanoflakes (measured perpendicular to surface of the Cu foil by using conductive atomic force microscopy) indicated that electrical resistivity of the nanoflakes increased about one order of magnitude after exposure to the bacterial suspension. The nanoflakes reduced by the bacterial suspension could also be...